Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 2;14(4):870-878.
doi: 10.1021/acs.jpclett.2c03460. Epub 2023 Jan 19.

Birth of the Hydrated Electron via Charge-Transfer-to-Solvent Excitation of Aqueous Iodide

Affiliations

Birth of the Hydrated Electron via Charge-Transfer-to-Solvent Excitation of Aqueous Iodide

Kevin Carter-Fenk et al. J Phys Chem Lett. .

Erratum in

Abstract

A primary means to generate hydrated electrons in laboratory experiments is excitation to the charge-transfer-to-solvent (CTTS) state of a solute such as I-(aq), but this initial step in the genesis of e-(aq) has never been simulated directly using ab initio molecular dynamics. We report the first such simulations, combining ground- and excited-state simulations of I-(aq) with a detailed analysis of fluctuations in the Coulomb potential experienced by the nascent solvated electron. What emerges is a two-step picture of the evolution of e-(aq) starting from the CTTS state: I-(aq) + → I-*(aq) → I(aq) + e-(aq). Notably, the equilibrated ground state of e-(aq) evolves from I-*(aq) without any nonadiabatic transitions, simply as a result of solvent reorganization. The methodology used here should be applicable to other photochemical electron transfer processes in solution, an important class of problems directly relevant to photocatalysis and energy transfer.

PubMed Disclaimer

LinkOut - more resources