Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar:139:105672.
doi: 10.1016/j.jmbbm.2023.105672. Epub 2023 Jan 10.

Age-dependent mechanical properties of tail tendons in wild-type and mimecan gene-knockout mice - A preliminary study

Affiliations
Free article

Age-dependent mechanical properties of tail tendons in wild-type and mimecan gene-knockout mice - A preliminary study

C Boote et al. J Mech Behav Biomed Mater. 2023 Mar.
Free article

Abstract

Mimecan, or osteoglycin, belongs to the family of small leucine-rich proteoglycans. In connective tissues mimecan is implicated in the development and maintenance of normal collagen fibrillar organization. Since collagen fibrils are responsible for tissue reinforcement, the absence of mimecan could lead to abnormal tissue mechanical properties. Here, we carried out a preliminary investigation of possible changes in the mechanical properties of tendons in mice lacking a functional mimecan gene, as a function of age. Tail tendons were dissected from mimecan gene knockout (KO) and wild type (WT) mice at ages 1, 4 and 8 months and mechanical properties evaluated using a microtensile testing equipment. Mimecan gene knockout resulted in changes in tendon elasticity- and fracture-related properties. While tendons of WT mice exhibited enhanced mechanical properties with increasing age, this trend was notably attenuated in mimecan KO tendons, with the exception of fracture strain. When genotype and age were considered as cross factors, the diminution in the mechanical properties of mimecan KO tendons was significant for yield strength, modulus and fracture strength. This effect appeared to affect the mice at 4 month old. These preliminary results suggest that mimecan may have a role in regulating age-dependent mechanical function in mouse tail tendon.

Keywords: Elasticity; Fracture; Mimecan; Osteoglycin; Tendon diameter.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources