Stepwise solid phase extraction integrated with chemical derivatization for all-in-one injection LC-MS/MS analysis of metabolome and lipidome
- PMID: 36657877
- DOI: 10.1016/j.aca.2023.340807
Stepwise solid phase extraction integrated with chemical derivatization for all-in-one injection LC-MS/MS analysis of metabolome and lipidome
Abstract
The metabolome and lipidome are critical components in illustrating biological processes and pathological mechanisms. Generally, two or more independent methods are required to analyze the two compound panels due to their distinct chemical properties and polarity differences. Here, a novel strategy integrating stepwise solid-phase extraction (SPE) and dansyl chemical derivatization was proposed for all-in-one injection LC-MS/MS analysis of serum metabolome and lipidome. In this workflow, a stepwise elution procedure was firstly optimized to separate the metabolome and lipidome fractions using an Ostro plate. Dansyl chemical derivatization was then applied to label amine/phenol, carboxyl, and carbonyl-containing sub-metabolomes. Our results demonstrated that the dansyl labeling could significantly improve chromatographic separation, enhance the MS response, and overcome the matrix effect of co-eluting lipids. Ultimately, an all-in-one injection LC-MS/MS method measuring 256 lipids (covering 20 subclasses) and 212 metabolites (including amino acids, bile acids, fatty acids, acylcarnitines, indole derivatives, ketones and aldehydes, nucleic acid metabolism, polyamines, etc.) was established. This method was applied to investigate the metabolic changes in cisplatin-induced nephrotoxicity in rats and the results were compared with previous untargeted metabolomics. The presented strategy could predominantly improve the analytical coverage and throughput and can be of great use in discovering reliable potential biomarkers in various applications.
Keywords: Chemical derivatization; Dansyl labeling; Lipidome; Liquid chromatography-tandem mass spectrometry; Metabolome; Solid-phase extraction.
Copyright © 2023. Published by Elsevier B.V.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
