Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 23;10(1):6.
doi: 10.3390/vetsci10010006.

Whole Genome Sequencing of SARS-CoV-2 in Cats and Dogs in South Korea in 2021

Affiliations

Whole Genome Sequencing of SARS-CoV-2 in Cats and Dogs in South Korea in 2021

Yeun-Kyung Shin et al. Vet Sci. .

Abstract

SARS-CoV-2 infections have caused unprecedented damage worldwide by affecting humans and various animals. The first reported animal infection was observed in a pet dog in Hong Kong in March 2020. 36 countries reported 692 SARS-CoV-2 infections in 25 different animal species by 31 August 2022. Most outbreaks were caused by contact with SARS-CoV-2 infected humans. In South Korea, the first SARS-CoV-2 infection in an animal was reported in a cat in February 2021. As of 31 December 2021, 74 dogs and 42 cats have been confirmed to have SARS-CoV-2 in South Korea. Here, we identified various SARS-CoV-2 genomic lineages in SARS-CoV-2 confirmed cats and dogs. Among the 40 animal samples sequenced for lineage identification, a total of eight Pango lineages (B.1.1.7 (Alpha variant), B.1.429 (Epsilon variant), B.1.470, B.1.497, B.1.619.1, B.1.620, AY.69 (Delta variant), and AY.122.5 (Delta variant)) were identified. The dominant lineages were AY.69 (Delta variant; 37.5%), B.1.497 (35.0%), and B.1.619.1 (12.5%). This study provides the first reported cases of six lineages (B.1.470, B.1.497, B.1.620, B.1.619.1, AY.69 (Delta variant)), and AY.122.5 (Delta variant) in cats and dogs. Our results emphasize the importance of monitoring SARS-CoV-2 in pets because they are dynamic hosts of variant Pango lineages of SARS-CoV-2.

Keywords: SARS-CoV-2; animals; cats; dogs; genomic; surveillance; variants.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Phylogenetic tree analysis of SARS-CoV-2 whole genome sequences. This tree includes 40 SARS-CoV-2 whole genome sequences obtained in this study (25 dogs and 15 cats) and 421 SARS-CoV-2 complete genome sequences in GISAID from humans in South Korea. The analysis used ML with the GTR and F model.

References

    1. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. - DOI - PMC - PubMed
    1. WHO World Health Organization 2022 WHO, COVID-19 Dashboard. [(accessed on 31 October 2022)]. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
    1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z. - DOI - PMC - PubMed
    1. Tao K., Tzou P.L., Nouhin J., Gupta R.K., de Oliveira T., Kosakovsky Pond S.L., Fera D., Shafer R.W. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021;22:757–773. doi: 10.1038/s41576-021-00408-x. - DOI - PMC - PubMed
    1. Gupta A.M., Chakrabarti J., Mandal S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 2020;22:598–607. doi: 10.1016/j.micinf.2020.10.004. - DOI - PMC - PubMed

LinkOut - more resources