Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar:317:137852.
doi: 10.1016/j.chemosphere.2023.137852. Epub 2023 Jan 17.

Importance of hydraulic travel time for the evaluation of organic compounds removal in bank filtration

Affiliations
Free article

Importance of hydraulic travel time for the evaluation of organic compounds removal in bank filtration

Sebastian Handl et al. Chemosphere. 2023 Mar.
Free article

Abstract

The growing global demand for drinking water is driving both the diversification of water supply sources and their sustainability. River bank filtration (RBF) is an excellent option since it strongly reduces the extent of treatment steps compared to direct usage of surface water. Organic micropollutants (e.g. pharmaceuticals) are widely recognized as a hazard in drinking water production from surface water. Due to their potentially high mobility, stability, bioaccumulation and persistency, these substances can pass through RBF-systems. Scientific studies on compound removal and attenuation efficiency of RBF rely on the knowledge of travel time to compare concentrations in the river to the ones in the bank filtrate since water quality in rivers can change rapidly. However, bank filtrate samples represent a mixture of water with different travel times as the flow paths vary. This has not yet been considered in studies of bank filtration removal efficiency for organic micro pollutants. Here we present a method that considers the residence-time distribution of the bank filtrate sample obtained by groundwater modelling to evaluate the removal efficiency of RBF for organic micropollutants. The method was tested in a comprehensive study with 50 samples taken over a one-year-period at a river bank filtration site in Vienna (Austria). Our findings revealed that better coverage of varying river water quality (higher sampling frequency during the period of infiltration) resulted not only in a higher number of compounds considered as removed but also significantly reduced the number of compounds considered to have formed during the RBF process. The application of the presented method indicated that RBF is very effective in removing organic micropollutants. Considering different travel times will provide better models and a better understanding of the potential of RBF for pollutant removal and thus supports its safe application as a solution to the growing demand for drinking water.

Keywords: Groundwater modelling; High resolution mass spectrometry; Non-targeted analysis; Organic micropollutants; Residence time distribution; River bank filtration.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources