Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage-dependent and pH-sensitive mechanisms
- PMID: 3667622
Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage-dependent and pH-sensitive mechanisms
Abstract
Previous work (Babcock, D. F., Rufo, G. A., and Lardy, H.A. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 1327-1331) established that increased cytosolic pH (pHi) promotes metabolic and swimming activity of bull sperm and that intracellular alkalinization results from elevated extracellular K+, presumably as a consequence of membrane depolarization. The present studies show that a persistent but reversible increase in [Ca2+]i accompanies the increase in pHi that similarly results from treatment of ram sperm with elevated [K+] in alkaline media. Because comparable increases in pHi occur in the presence or absence of external Ca2+ and because [Ca2+]i is unaltered by imposed changes in pHi alone, [Ca2+]i and pHi apparently are neither directly linked by transmembrane Ca2+/H+ exchange nor indirectly linked through Na+/H+ and Na+/Ca2+ exchange under these conditions. Instead, inhibition of K+-induced increases in [Ca2+]i (but not of increases in pHi) by prenylamine, diltiazem, nifedipine, or verapamil (C1/2 = 6, 20, 30, and 60 microM, respectively) indicates that voltage-dependent Ca2+ channels, distinct from previously described voltage-dependent effectors of pHi, operate in mammalian sperm to control [Ca2+]i. Treatment with Cs+ plus valinomycin (as an alternative method of membrane depolarization) increases pHi much more effectively than it increases [Ca2+]i, and thus also partially supports this contention. In contrast to an apparent insensitivity to pHi, K+-dependent increases in [Ca2+]i are promoted reversibly by elevation of pHo, probably reflecting local surface charge effects on channel activity (as suggested by patch-clamp studies in other systems). A selective increase in membrane permeability to Ca2+ that is induced by 12 mM NaF under nondepolarizing conditions is not a consequence of cellular aggregation, but is attenuated by the chelator deferoxamine, suggesting that GTP-binding protein additionally may couple sperm Ca2+ channels to surface receptors and promote channel opening during sperm capacitation, presumably in response to agonists produced within the mammalian female reproductive tract.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous