Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan 7;28(2):618.
doi: 10.3390/molecules28020618.

Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold

Affiliations
Review

Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold

Siva S Panda et al. Molecules. .

Abstract

Spirooxindoles occupy an important place in heterocyclic chemistry. Many natural spirooxindole-containing compounds have been identified as bio-promising agents. Synthetic analogs have also been synthesized utilizing different pathways. The present article summarizes the recent development of both natural and synthetic spirooxindole-containing compounds prepared from isatin or its derivatives reported in the last five years. The spirooxindoles are categorized based on their mentioned biological properties.

Keywords: alkaloids; biological properties; natural product; spirooxindole; synthesis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Natural C-2 and C-3 spiroindole-containing compounds.
Figure 2
Figure 2
Cipargamin (NITD609), MI-888, MI-219 and SOID-6 representatives of potent biologically active spirooxindoles.
Figure 3
Figure 3
Flueindoline C 1 isolated from the ripe fruits of Flueggea virosa and spiroindoles 2, 3 from Datura metel L. seeds.
Figure 4
Figure 4
Spirooxindole alkaloids 47 isolated from the leaves of Malaysian Mitragyna speciosa (Kratom).
Figure 5
Figure 5
Spirooxindoles (2S,3S)-javaniside 8, naucleoxoside A 9, and naucleoxoside B 10 isolated from the stem of Nauclea officinalis.
Figure 6
Figure 6
Monoterpenoid indoles 1114 isolated from the leaves and stems of Gardneria multiflora.
Figure 7
Figure 7
Spirooxindoles 1519 isolated from the marine fungus Penicillium janthinellum HK1–6.
Scheme 1
Scheme 1
Synthesis of 3-spirocyclopropyl-2-oxindoles 21.
Scheme 2
Scheme 2
Synthesis of spiro[indoline-3,4’-pyrans] 27 and 28.
Scheme 3
Scheme 3
Synthesis of spiro[indoline-3,2’-[1,3,4]oxadiazols] 30.
Scheme 4
Scheme 4
Synthesis of spiro-β-lactam-oxindoles 31.
Scheme 5
Scheme 5
Synthesis of spiro[indoline-3,3’-pyrazoline]-2-ones 33 and spiro[indoline-3,4’-pyrimidin]-2-ones 34.
Scheme 6
Scheme 6
Synthesis of spiro[indoline-3,4’-pyrimidin]-2-ones 34.
Scheme 7
Scheme 7
Synthesis of spiro[indoline-3,3’-pyrrolidines] 4042.
Scheme 8
Scheme 8
Synthesis of spirooxindolopyrrolidines 47 and 48.
Scheme 9
Scheme 9
Synthesis of spiro[indoline-3,4’-[1,3]dithiines] 50.
Scheme 10
Scheme 10
Synthesis of spiro[indoline-3,2’-thiazolidine]-2,4’-dione 52.
Scheme 11
Scheme 11
Synthesis of spiro[indoline-3,2’-thiazolidines] 54.
Scheme 12
Scheme 12
Synthesis of Isoniazid-spirooxindoles 56.
Scheme 13
Scheme 13
Synthesis of dispiro[indoline-3,2’-pyrrolidine-3’,3″-piperidines] 58.
Scheme 14
Scheme 14
Synthesis of spiro[[ 1,2,3]triazolo[4,5-b]pyridine-7,3’-indolines] 60.
Figure 8
Figure 8
MDM2-p53 inhibitors entered in human clinical trials.
Scheme 15
Scheme 15
Synthesis of spirooxindole derivative 63.
Scheme 16
Scheme 16
Synthesis of spiropyrazoline-oxindole 66 and 67.
Scheme 17
Scheme 17
Synthesis of spirooxindoles 69.
Scheme 18
Scheme 18
Synthesis of spirooxindoles 70.
Scheme 19
Scheme 19
Synthesis of nitroisoxazole-containing spirooxindoles 71.
Scheme 20
Scheme 20
Synthesis of dispirooxindoles 73.
Scheme 21
Scheme 21
Synthesis of spiro[indoline-3,2′-naphthalenes] 74.
Scheme 22
Scheme 22
Synthesis of spirooxindoles 77.
Scheme 23
Scheme 23
Synthesis of spiro[chroman-2,3’-indoline] 78 and spiro[indoline-3,3’-pyrazols] 81.
Scheme 24
Scheme 24
Synthesis of spiroindole-pyrrolidines 82.
Scheme 25
Scheme 25
Synthesis of spiro[indole-3,5′-isoxazoles] 84.
Scheme 26
Scheme 26
Synthesis of spiroindoles 86 and 3,3′-bis(1H-indole)methanes 87.
Scheme 27
Scheme 27
Synthesis of spiro[indoline -3,2′-pyrrolidins] 89.
Scheme 28
Scheme 28
Synthesis of thiazolo-pyrrolidine-spirooxoindoles 91.
Scheme 29
Scheme 29
Synthesis of spirooxindole-pyrrolo-carbazole 93.
Scheme 30
Scheme 30
Synthesis of spiro[indoline-pyrrolizin]-ones 95.
Scheme 31
Scheme 31
Synthesis of spirooxindoles 97.
Scheme 32
Scheme 32
Synthesis of spirocyclopropaneoxindoles 99.
Scheme 33
Scheme 33
Synthesis of spiro[chromeno[4,3-b]chromene-7,3′-indolines] 100 and spiro[indeno[2′,1′:5,6]pyrano[3,2-c]chromene-7,3′-indolines] 101.
Scheme 34
Scheme 34
Synthesis of spiro[acridine-9,3′-indolines]-1,2′,8-triones 102.
Scheme 35
Scheme 35
Synthesis of spirooxindoles 104, 105, and 106.
Scheme 36
Scheme 36
Synthesis of spiro[indoline-2,5′-[4′,5′]dihydrothiazoles] 109.
Scheme 37
Scheme 37
Synthesis of spirooxindoles 113.
Scheme 38
Scheme 38
Synthesis of spiro[indoline-3,3′-pyrrolidines] 114.
Figure 9
Figure 9
Artemisinin, antimalarial drug.
Scheme 39
Scheme 39
Synthesis of spiro[indoline-3,2′- [1,3,4]oxadiazol]-2-ones 117.
Scheme 40
Scheme 40
Synthesis of Spiro[indoline-3,2′-quinolins] 121 and spiro[indoline-3,5′-pyrano[3,2-c]quinolins] 122.
Scheme 41
Scheme 41
Synthesis of spirooxindoles 124a, 124b.
Scheme 42
Scheme 42
Synthesis of Spirooxindoles 126.
Scheme 43
Scheme 43
Synthesis of spirooxindoles 129 and 130.
Scheme 44
Scheme 44
Synthesis of spirooxindoles 130.
Figure 10
Figure 10
Spiro[indoline-3,2′-quinolins] 121 of promising anti-leishmanial properties.
Scheme 45
Scheme 45
Synthesis of spirooxindoles 131.

References

    1. Bariwal J., Voskressensky L.G., Van der Eycken E.V. Recent advances in spirocyclization of indole derivatives. Chem. Soc. Rev. 2018;47:3831–3848. doi: 10.1039/C7CS00508C. - DOI - PubMed
    1. Yu B., Yu D.-Q., Liu H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015;97:673–698. doi: 10.1016/j.ejmech.2014.06.056. - DOI - PubMed
    1. Ganesh M., Suraj S. Expeditious entry into carbocyclic and heterocyclic spirooxindoles. Org. Biomol. Chem. 2022;20:5651–5693. doi: 10.1039/D2OB00767C. - DOI - PubMed
    1. Yang J., Wang Y., Guan W., Su W., Li G., Zhang S., Yao H. Spiral molecules with antimalarial activities: A. review. Eur. J. Med. Chem. 2022;237:114361. doi: 10.1016/j.ejmech.2022.114361. - DOI - PubMed
    1. Nasri S., Bayat M., Mirzaei F. Recent strategies in the synthesis of spiroindole and spirooxindole scaffolds. Top. Curr. Chem. 2021;379:25. doi: 10.1007/s41061-021-00337-7. - DOI - PubMed

LinkOut - more resources