Risk Factors for Exposure of Wild Birds to West Nile Virus in A Gradient of Wildlife-Livestock Interaction
- PMID: 36678431
- PMCID: PMC9864363
- DOI: 10.3390/pathogens12010083
Risk Factors for Exposure of Wild Birds to West Nile Virus in A Gradient of Wildlife-Livestock Interaction
Abstract
West Nile virus (WNV) transmission rate is shaped by the interaction between virus reservoirs and vectors, which may be maximized in farm environments. Based on this hypothesis, we screened for WNV in wild birds in three scenarios with decreasing gradient of interaction with horses: (i) the farm (A1); (ii) the neighborhood (A2); and (iii) a wild area (A3). We captured wild birds and analyzed their sera for WNV antibodies by blocking ELISA and micro-virus neutralization test. Flavivirus infections were tested with generic and specific PCR protocols. We parameterized linear mixed models with predictors (bird abundance and diversity, vector abundance, vector host abundance, and weather quantities) to identify Flavivirus spp. and WNV exposure risk factors. We detected a low rate of Flavivirus infections by PCR (0.8%) and 6.9% of the birds were seropositive by ELISA. Exposure to Flavivirus spp. was higher in A1 (9%) than in A2 and A3 (5.6% and 5.8%, respectively). Bird diversity was the most relevant predictor of exposure risk and passerines dominated the on-farm bird community. Our results suggest that measures deterring the use of the farm by passerines should be implemented because the environmental favorability of continental Mediterranean environments for WNV is increasing and more outbreaks are expected.
Keywords: Flavivirus; bird diversity; disease ecology; emerging zoonoses; horse; risk factors.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Environmental determinants of West Nile virus vector abundance at the wildlife-livestock interface.Med Vet Entomol. 2025 Mar;39(1):200-215. doi: 10.1111/mve.12774. Epub 2024 Nov 5. Med Vet Entomol. 2025. PMID: 39499206 Free PMC article.
-
West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain.Vet Sci. 2024 Jun 7;11(6):259. doi: 10.3390/vetsci11060259. Vet Sci. 2024. PMID: 38922006 Free PMC article.
-
Serological evidence of flaviviruses and alphaviruses in livestock and wildlife in Trinidad.Vector Borne Zoonotic Dis. 2012 Nov;12(11):969-78. doi: 10.1089/vbz.2012.0959. Epub 2012 Sep 18. Vector Borne Zoonotic Dis. 2012. PMID: 22989182 Free PMC article.
-
Retrospective review and current knowledge on the occurrence of West Nile virus in mosquito vectors, reservoirs and hosts in Slovakia (Central Europe).Acta Virol. 2020;64(2):187-200. doi: 10.4149/av_2020_209. Acta Virol. 2020. PMID: 32551787 Review.
-
West Nile Disease Epidemiology in North-West Africa: Bibliographical Review.Transbound Emerg Dis. 2016 Dec;63(6):e153-e159. doi: 10.1111/tbed.12341. Epub 2015 Mar 6. Transbound Emerg Dis. 2016. PMID: 25753775 Review.
Cited by
-
Insights into the spatiotemporal dynamics of West Nile virus transmission in emerging scenarios.One Health. 2023 May 1;16:100557. doi: 10.1016/j.onehlt.2023.100557. eCollection 2023 Jun. One Health. 2023. PMID: 37363231 Free PMC article.
-
Generating prophylactic immunity against arboviruses in vertebrates and invertebrates.Nat Rev Immunol. 2024 Sep;24(9):621-636. doi: 10.1038/s41577-024-01016-6. Epub 2024 Apr 3. Nat Rev Immunol. 2024. PMID: 38570719 Review.
-
West Nile virus emergence in humans in Extremadura, Spain 2020.Front Cell Infect Microbiol. 2023 Jul 4;13:1155867. doi: 10.3389/fcimb.2023.1155867. eCollection 2023. Front Cell Infect Microbiol. 2023. PMID: 37469597 Free PMC article.
-
Monitoring the West Nile virus outbreaks in Italy using open access data.Sci Data. 2023 Nov 7;10(1):777. doi: 10.1038/s41597-023-02676-0. Sci Data. 2023. PMID: 37935727 Free PMC article.
-
West Nile Virus Seroprevalence Among Outdoor Workers in Southern Italy: Unveiling Occupational Risks and Public Health Implications.Viruses. 2025 Feb 24;17(3):310. doi: 10.3390/v17030310. Viruses. 2025. PMID: 40143241 Free PMC article.
References
-
- Rodríguez-Alarcón L.G.S.M., Fernández-Martínez B., Moros M.J.S., Vázquez A., Pachés P.J., Villacieros E.G., Gómez Martín M.B., Figuerola Borras J., Lorusso N., Ramos Aceitero J.M., et al. Unprecedented increase of West Nile virus neuroinvasive disease, Spain, summer 2020. Euro Surveill. 2021;26:19. doi: 10.2807/1560-7917.ES.2021.26.19.2002010. - DOI - PMC - PubMed
-
- Beck C., Jiménez-Clavero M.A., Leblond A., Durand B., Nowotny N., Leparc-Goffart I., Zientara S., Jourdain E., Lecollinet S. Flaviviruses in Europe: Complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. Int. J. Environ. Res. Public Health. 2013;10:6049–6083. doi: 10.3390/ijerph10116049. - DOI - PMC - PubMed
-
- Ruiz-Fons F., Balseiro A., Willoughby K., Oleaga Á., Dagleish M.P., Pérez-Ramírez E., Havlíková S., Klempa B., Llorente F., Martín-Hernando M.P. Clinical infection of Cantabrian chamois (Rupicapra pyrenaica parva) by louping ill virus: New concern for mountain ungulate conservation? Eur. J. Wildl. Res. 2014;60:4. doi: 10.1007/s10344-014-0818-z. - DOI
-
- Gould E.A., de Lamballerie X., Zanotto P.M., Holmes E.C. Origins, evolution, and vector/host coadaptations within the Genus Flavivirus. Adv. Virus Res. 2003;59:277–314. - PubMed
-
- Guerrero-Carvajal F., Bravo-Barriga D., Martín-Cuervo M., Aguilera-Sepúlveda P., Ferraguti M., Jiménez-Clavero M.A., Llorente F., Alonso J.M., Frontera E. Serological evidence of co-circulation of West Nile and Usutu viruses in equids from western Spain. Transbound. Emerg. Dis. 2020;68:1432–1444. doi: 10.1111/tbed.13810. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous