Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 23;139(2):393-401.
doi: 10.3171/2022.11.JNS221544. Print 2023 Aug 1.

Development and validation of a machine learning algorithm for predicting diffuse midline glioma, H3 K27-altered, H3 K27 wild-type high-grade glioma, and primary CNS lymphoma of the brain midline in adults

Affiliations

Development and validation of a machine learning algorithm for predicting diffuse midline glioma, H3 K27-altered, H3 K27 wild-type high-grade glioma, and primary CNS lymphoma of the brain midline in adults

Kun Lv et al. J Neurosurg. .

Abstract

Objective: Preoperative diagnosis of diffuse midline glioma, H3 K27-altered (DMG-A) and midline high-grade glioma without H3 K27 alteration (DMG-W), as well as midline primary CNS lymphoma (PCNSL) in adults, is challenging but crucial. The aim of this study was to develop a model for predicting these three entities using machine learning (ML) algorithms.

Methods: Thirty-three patients with DMG-A, 35 with DMG-W, and 35 with midline PCNSL were retrospectively enrolled in the study. Radiomics features were extracted from contrast-enhanced T1-weighted MR images. Two radiologists evaluated the conventional MRI features of the tumors, such as shape. Patient age, tumor volume, and conventional MRI features were considered clinical features. The data set was randomly stratified into 70% training and 30% testing cohorts. Predictive models based on the clinical features, radiomics features, and integration of clinical and radiomics features were established through ML. The performances of the models were evaluated by calculating the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity. Subsequently, 10 patients with DMG-A, 10 with DMG-W, and 12 with PCNSL were enrolled from another institution to validate the established models.

Results: The predictive models based on clinical features, radiomics features, and the integration of clinical and radiomics features through the support vector machine algorithm had the optimal accuracies in the training, testing, and validation cohorts, and the accuracies in the testing cohort were 0.871, 0.892, and 0.903, respectively. Age, 2 radiomics features, and 3 conventional MRI features were the 6 most significant features in the established integrated model.

Conclusions: The integrated prediction model established by ML provides high discriminatory accuracy for predicting DMG-A, DMG-W, and midline PCNSL in adults.

Keywords: H3 K27–altered; adult; brain; glioma; lymphoma; magnetic resonance imaging; oncology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources