Transfer learning as an AI-based solution to address limited datasets in space medicine
- PMID: 36682827
- DOI: 10.1016/j.lssr.2022.12.002
Transfer learning as an AI-based solution to address limited datasets in space medicine
Abstract
The advent of artificial intelligence (AI) has a promising role in the future long-duration spaceflight missions. Traditional AI algorithms rely on training and testing data from the same domain. However, astronaut medical data is naturally limited to a small sample size and often difficult to collect, leading to extremely limited datasets. This significantly limits the ability of traditional machine learning methodologies. Transfer learning is a potential solution to overcome this dataset size limitation and can help improve training time and performance of a neural networks. We discuss the unique challenges of space medicine in producing datasets and transfer learning as an emerging technique to address these issues.
Keywords: Machine learning; Small datasets; Space medicine; Transfer learning.
Copyright © 2022. Published by Elsevier B.V.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources