A subnetwork-based framework for prioritizing and evaluating prognostic gene modules from cancer transcriptome data
- PMID: 36685033
- PMCID: PMC9845797
- DOI: 10.1016/j.isci.2022.105915
A subnetwork-based framework for prioritizing and evaluating prognostic gene modules from cancer transcriptome data
Abstract
Cancer prognosis prediction is critical to the clinical decision-making process. Currently, the high availability of transcriptome datasets allows us to extract the gene modules with promising prognostic values. However, the biomarker identification is greatly challenged by tumor and patient heterogeneity. In this study, a framework of three subnetwork-based strategies is presented, incorporating hypothesis-driven, data-driven, and literature-based methods with informative visualization to prioritize candidate genes. By applying the proposed approaches to a head and neck squamous cell cancer (HNSCC) transcriptome dataset, we successfully identified multiple HNSCC-specific gene modules with improved prognostic values and mechanism information compared with the standard gene panel selection methods. The proposed framework is general and can be applied to any type of omics data. Overall, the study demonstrates and supports the use of the subnetwork-based approach for distilling reliable and biologically meaningful prognostic factors.
Keywords: Bioinformatics; Cancer; Gene network.
© 2022 The Authors.
Conflict of interest statement
C.H.C. has received honoraria from Sanofi, Merck, and Brooklyn ImmunoTherapeutics, and Exelixis for serving in ad hoc scientific advisory boards. All other authors declare no conflict interest.
Figures





Similar articles
-
GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.BMC Med Genomics. 2016 Dec 5;9(Suppl 3):70. doi: 10.1186/s12920-016-0231-4. BMC Med Genomics. 2016. PMID: 28117655 Free PMC article.
-
Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):351. doi: 10.1186/s12859-016-1224-1. BMC Bioinformatics. 2016. PMID: 27766944 Free PMC article.
-
Identification of Potential Biomarkers and Survival Analysis for Head and Neck Squamous Cell Carcinoma Using Bioinformatics Strategy: A Study Based on TCGA and GEO Datasets.Biomed Res Int. 2019 Aug 7;2019:7376034. doi: 10.1155/2019/7376034. eCollection 2019. Biomed Res Int. 2019. PMID: 31485443 Free PMC article.
-
Transcriptomics and Epigenomics in head and neck cancer: available repositories and molecular signatures.Cancers Head Neck. 2020 Jan 21;5:2. doi: 10.1186/s41199-020-0047-y. eCollection 2020. Cancers Head Neck. 2020. PMID: 31988797 Free PMC article. Review.
-
Gene Expression Signatures for Head and Neck Cancer Patient Stratification: Are Results Ready for Clinical Application?Curr Treat Options Oncol. 2017 May;18(5):32. doi: 10.1007/s11864-017-0472-2. Curr Treat Options Oncol. 2017. PMID: 28474265 Review.
Cited by
-
Targeting PCSK9 reduces cancer cell stemness and enhances antitumor immunity in head and neck cancer.iScience. 2023 May 19;26(6):106916. doi: 10.1016/j.isci.2023.106916. eCollection 2023 Jun 16. iScience. 2023. PMID: 37305703 Free PMC article.
-
GPS-Net: Discovering prognostic pathway modules based on network regularized kernel learning.Am J Hum Genet. 2024 Dec 5;111(12):2826-2838. doi: 10.1016/j.ajhg.2024.10.004. Epub 2024 Nov 6. Am J Hum Genet. 2024. PMID: 39510078 Free PMC article.
-
GPS-Net: discovering prognostic pathway modules based on network regularized kernel learning.bioRxiv [Preprint]. 2024 Jul 18:2024.07.15.603645. doi: 10.1101/2024.07.15.603645. bioRxiv. 2024. Update in: Am J Hum Genet. 2024 Dec 5;111(12):2826-2838. doi: 10.1016/j.ajhg.2024.10.004. PMID: 39071382 Free PMC article. Updated. Preprint.
-
Identification of Diagnostic and Prognostic Subnetwork Biomarkers for Women with Breast Cancer Using Integrative Genomic and Network-Based Analysis.Int J Mol Sci. 2024 Nov 28;25(23):12779. doi: 10.3390/ijms252312779. Int J Mol Sci. 2024. PMID: 39684488 Free PMC article.
-
CGPA: multi-context insights from the cancer gene prognosis atlas.bioRxiv [Preprint]. 2024 Jul 23:2024.07.19.604345. doi: 10.1101/2024.07.19.604345. bioRxiv. 2024. PMID: 39091745 Free PMC article. Preprint.
References
-
- Kuksin M., Morel D., Aglave M., Danlos F.X., Marabelle A., Zinovyev A., Gautheret D., Verlingue L. Applications of single-cell and bulk RNA sequencing in onco-immunology. Eur. J. Cancer. 2021;149:193–210. - PubMed
-
- Li K., Wang X., Kuan P.F. Mixture network regularized generalized linear model with feature selection. bioRxiv. 2019:678029. doi: 10.1101/678029. Preprint at. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources