Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan 13:6:100298.
doi: 10.1016/j.fsisyn.2022.100298. eCollection 2023.

Interpol review of the analysis and detection of explosives and explosives residues

Affiliations
Review

Interpol review of the analysis and detection of explosives and explosives residues

Douglas J Klapec et al. Forensic Sci Int Synerg. .
No abstract available

PubMed Disclaimer

Similar articles

Cited by

References

Review Articles

    1. Adegoke O., Nic Daeid N. Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg. Top. Life Sci. 2021;5(3):367–379. doi: 10.1042/ETLS20200281. - DOI - PubMed
    1. Amali R.K.A., Lim H.N., Ibrahim I., Huang N.M., Zainal Z., Ahmad S.A.A. Significance of nanomaterials in electrochemical sensors for nitrate detection: a review. Trends Environ. Anal. Chem. 2021;31 doi: 10.1016/j.teac.2021.e00135. - DOI
    1. Apak R., Cekic S.D., Uzer A., CApanoglu E., Celik S.E., Bener M., Can Z., Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. Anal. Methods. 2020;12(44):5266–5321. doi: 10.1039/D0AY01521K. - DOI - PubMed
    1. Babrauskas V., Leggett D. Thermal decomposition of ammonium nitrate. Fire Mater. 2019;44(2):250–268. doi: 10.1002/fam.2797. - DOI
    1. Baig N., Kammakakam & I., Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2(6):1821–1871. doi: 10.1039/D0MA00807A. - DOI

Explosive Standards and References, Laboratory Quality Control, Contamination Prevention

    1. ASTM International . Vol. 15.08. ASTM International; 2021. (ASTM E2520-21: Standard Practice for Measuring and Scoring Performance of Trace Explosive Chemical Detectors. Annual Book of ASTM Standards). - DOI
    1. ASTM International . Vol. 15.08. ASTM International; 2021. (ASTM E2677-20: Standard Test Method for Estimating Limits of Detection in Trace Detectors for Explosives and Drugs of Interest. Annual Book of ASTM). - DOI
    1. Bose A. CRC Press; 2022. Military Pyrotechnics.
    1. Collett G. Action on Armed Violence; 2021. An Examination of the Precursor Chemicals used in the Manufacture of Explosive Compositions Found within Improvised Explosive Devices (IEDs)https://cd-geneve.delegfrance.org/AOAV-Publication-of-two-reports-on-IEDs Online at.
    1. Klapotke T. second ed. De Gruyter; 2021. Energetic Materials Encyclopedia. Vols. 1-3. - DOI

Sampling and Concentration of Explosive Traces

    1. Amaral M.A., Yasin S., Gibson A.P., Morgan R.M. Sampling of explosive residues: the use of a gelatine-based medium for the recovery of ammonium nitrate. Sci. Justice. 2020;60(6):531–537. doi: 10.1016/j.scijus.2020.07.007. - DOI - PubMed
    1. Avissar Y., Zelkowicz A., Rossin A., Kirshenbaum Y., Tenne D., Grafit A. An efficient extraction method for post-blast traces of organic explosives. J. Forensic Ident. 2021;71(1):35–48.
    1. Benhammda A., Trache D., Kesraoui M., Tarchoun A., Chelouche S., Mezroua A. Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim. Acta. 2020;686 doi: 10.1016/j.tca.2020.178570. - DOI
    1. Cardoso R.M., Castro S.V.F., Silva M.N.T., Lima A.P., Santana M.H.P., Nossol E., Silva R.A.B., Richter E.M., Paixao T.R.L.C., Munoz R.A.A. 3D-printed flexible device combining sampling and detection of explosives. Sensor. Actuator. B Chem. 2019;292:308–313. doi: 10.1016/j.snb.2019.04.126. - DOI
    1. Evans-Nguyen K.M., Rivera A., Fontanez-Adames J., Li F., Musselman B. Solvent-free noncontact electrostatic sampling for rapid analysis with mass spectrometry: application to drugs and explosives. J. Am. Soc. Mass Spectrom. 2020;31(11):2237–2242. doi: 10.1021/jasms.0c00286. - DOI - PubMed

Commercial Explosives:

    1. Ali F., Roy M., Pingua B., Mukherjee R., Agarwal L., Singh P. Utilization of waste lubricant oil in fuel phase of ANFO explosives: its field applications and environmental impact. Propellants, Explos. Pyrotech. 2021;46(9):1397–1404. doi: 10.1002/prep.202100011. - DOI
    1. Anderson E., Chiquete C., Jackson S., Chicas R., Short M. The comparative effect of HMX content on the detonation performance characterization of PBX 9012 and PBX 9501 high explosives. Combust. Flame. 2021;230 doi: 10.1016/j.combustflame.2021.111415. - DOI
    1. Artyukhov A., Berladir K., Krmela J. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), Sumy, Ukraine. 2020, November 9-13. Technological basis for the production of ammonium nitrate with a nanoporous surface and near-surface structure in combined flow motion devices [Paper presentation] - DOI
    1. Arumugachamy Z., Pandian P., Kadarkaraithangam J. Experimentation on minimum ignition temperature for boron blended fireworks flash powder dust cloud at normal and inert environmental conditions. Fire Mater. 2022;46(2):410–419. doi: 10.1002/fam.2977. - DOI
    1. Bao, P., Li, J., Han, Z., Ma, H., & Wang, Comparing the impact safety between two HMX-based PBX with different binders. FirePhysChem, 1(3), 139-145. 10.1016/j.fpc.2021.08.002. - DOI

Homemade Explosives:

    1. Baldaino J., Ommen D., Saunders, Hietpas J., Buscaglia J. Characterization and differentiation of aluminum powders used in improvised explosive devices. Part 1: proof of concept of the utility of particle micromorphometry. J. Forensic Sci. 2021;66(1):83–95. doi: 10.1111/1556-4029.14564. - DOI - PubMed
    1. Bezemer K., McLennan L., van Duin L., Kuijpers C., Koeberg M., van den Elshout J., van der Heijden A., Busby T., Yevdokimov A., Schoenmakers P., Smith J., Oxley J., can Asten A. Chemical attribution of the home-made explosive ETN – Part I: liquid chromatography-mass spectrometry analysis of partially nitrated erythritol impurities. Forensic Sci. Int. 2020;307 doi: 10.1016/j.forsciint.2019.110102. - DOI - PubMed
    1. D'Uva J., DeTata D., Fillingham R., Dunsmore R., Lewis S.W. Synthesis and characterisation of homemade urea nitrate explosive from commercial sources of urea. Forensic Chem. 2021;26 doi: 10.1016/j.forc.2021.100369. - DOI
    1. Freye C., Kinman W., Tiemann C., McDonald D., Manner V., Bowden P., Tappan B., Greenfield M. Linking chemical precursors to the synthesis of Erythritol Tetranitrate. Forensic Chem. 2020 doi: 10.1016/j.forc.2020.100246. - DOI
    1. Horvath T., Ember I. Characteristics of homemade explosive materials and their possibilities of their identification. Rev. Acad. Fortelor Terestre. 2021;26(2):100–107. doi: 10.2478/raft-2021-0015. - DOI

Other Explosives including Novel or New Explosives:

    1. Abraham B.M., Waitheeswaran G. From van der Waals interactions to structures and properties of 3,-dinitro-5,-bis-1,2,4-triazole-1,-diolate based energetic materials. Mater. Chem. Phys. 2020;240 doi: 10.1016/j.matchemphys.2019.122175. - DOI
    1. Abraham B.M., Yedukondalu N., Vaitheeswaran G. High-pressure structural and electronic properties of potassium-based green primary explosives. J. Electron. Mater. 2021;50(4):1581–1590. doi: 10.1007/s11664-020-08262-z. - DOI
    1. Agrawal J., Dodke V. Some novel high energy materials for improved performance. Zeitschrift fur anorganische und allgemeine Chemie. 2021;647(19):1856–1882. doi: 10.1002/zaac.202100144. - DOI
    1. Anderson E., Chiquete C., Jackson S. Experimental measurement of energy release from an initiating layer in an insensitive explosive. Proc. Combust. Inst. 2021;38(3):3733–3740. doi: 10.1016/j.proci.2020.07.150. - DOI
    1. Anniyappan M., Varma K., Amit R., Nair J. 1-methyl-2,4,5-trinitroimidazole (MTNI), a melt-cast explosive: synthesis and studies on thermal behavior in presence of explosive ingredients. J. Energetic Mater. 2019 doi: 10.1080/07370652.2019.1669735. - DOI

Instrumental Analysis of ExplosivesLC/HPLC/UPLC

    1. Chen J., Ding H., Li J., Chen Y., Liu Y., Zhao X. Development and validation of HPLC method for DAAF and its application in quality control and environmental monitoring. Propellants, Explos. Pyrotech. 2020;45(10):1580–1589. doi: 10.1002/prep.202000018. - DOI
    1. Ding H., Zhao H., Chen J., Zhang Z., Liu Y. Development and validation of a HPLC-UV method for DATNBI and its' application in quality control. J. Liq. Chromatogr. Relat. Technol. 2021;44(3–4):220–228. doi: 10.1080/10826076.2021.1884569. - DOI
    1. Freye C., Nguyen T., Tappan B. Investigation of the impurities in erythritol tetranitrate (ETN) using UHPLC-QTOF. Propellants, Explos. Pyrotech. 2021;46(10):1555–1560. doi: 10.1002/prep.202100193. - DOI
    1. Freye C.E., Lease N., Brown G.W., Tappan B.C., Thompson D.G., Rosales C.J., Larson S.A. Identification of blue discoloration in PBX 9404 using ultrahigh pressure liquid chromatography with quadrupole time-of-flight mass spectrometry. Propellants, Explos. Pyrotech. 2021;46(3):355–359. doi: 10.1002/prep.202000230. - DOI
    1. Freye C.E., Rosales C.J., Thompson D.G., Brown G.W., Larson S.A. Development of comprehensive two-dimensional liquid chromatography for investigating aging of plastic bonded explosives. J. Chromatogr. A. 2019;1611 doi: 10.1016/j.chroma.2019.460580. - DOI - PubMed
Ion Chromatography
    1. Beal S., Taylor S., Crouch R., Bednar A. U.S. Army Corps of Engineers; 2020. Environmental Analysis of Aqueous 3-nitro-1,2,4-Triazol-5-One (NTO) by Ion Chromatography with Conductivity Detection (ERDC TR-20-13) - DOI
    1. Gallidabino M.D., Irlam R.C., Salt M.C., O'Donnell M., Beardah M.S., Barron L.P. Targeted and non-targeted forensic profiling of black powder substitutes and gunshot residue using gradient ion chromatography – high resolution mass spectrometry (IC-HRMS) Anal. Chim. Acta. 2019;1072:1–14. doi: 10.1016/j.aca.2019.04.048. - DOI - PubMed
    1. Hartel M.A.C., Klapotke T.M., Stierstorfer J., Zehetner L. Vapor pressure of linear nitrate esters determined by transpiration method in combination with VO-GC/MS. Propellants, Explos. Pyrotech. 2019;44(4):484–492. doi: 10.1002/prep.201800133. - DOI
    1. Harvey A. University of York; 2019. Detection and Identification of Chemical Warfare Agents and Explosives in Complex Matrices. Doctoral Dissertation.
    1. Hutchinson J.P., Johns C., Dicinoski G.W., Jones L., Breadmore M.C., Haddad P.R. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Wiley; 2020. Identification of improvised inorganic explosives devices by analysis of postblast residues using ion chromatography and capillary electrophoresis. - DOI
Gas Chromatography
    1. Cruse C., Goodpaster J. Optimization of gas chromatography/vacuum ultraviolet (GC/VUV) spectroscopy for explosive compounds and application to post-blast debris. Forensic Chem. 2021;26 doi: 10.1016/j.forc.2021.100362. - DOI
    1. Cruse C., Pu J., Goodpaster J. Identifying thermal decomposition products of nitrate ester explosives using gas chromatography-vacuum ultraviolet spectroscopy: an experimental and computation study. Appl. Spectrosc. 2020 doi: 10.1177/0003702820915506. - DOI - PubMed
    1. Cruse C.A., Goodpaster J.V. Thermal and spectroscopic analysis of nitrated compounds and their breakdown products using gas chromatography/vacuum UV spectroscopy (GC/VUV) Anal. Chim. Acta. 2021;1143:117–123. doi: 10.1016/j.aca.2020.11.041. - DOI - PubMed
    1. Lara-Ibeas I., Cuevas A., Le Calve S. Recent developments and trends in miniaturized gas preconcentrators for portable gas chromatography systems: a review. Sensor. Actuator. B Chem. 2021;346 doi: 10.1016/j.snb.2021.130449. - DOI
    1. Li M., Ghosh A., Venkatasubramanin A., Sharma R., Huang X., Fan X. High-sensitivity micro-gas chromatograph-photoionization detector for trace vapor detection. ACS Sens. 2021;6(6):2348–2355. doi: 10.1021/acssensors.1c00482. - DOI - PubMed
Capillary Electrophoresis
    1. Bezemer K., van Duin L., Martin-Alberca C., Somsen G., Schoenmakers P., Haselberg R., van Asten A. Rapid forensic chemical classification of confiscated flash banger fireworks using capillary electrophoresis. Forensic Chem. 2019;16 doi: 10.1016/j.forc.2019.100187. - DOI
    1. Bezemer K.D.B., Forbes T.P., Hulsbergen A.W.C., Verkouteren J., Krauss S.T., Kobeberg M., Schoenmakers P.J., Gillen G., van Asten A.C. Emerging techniques for the detection of pyrotechnic residues from seized postal packages containing fireworks. Forensic Sci. Int. 2020;308 doi: 10.1016/j.forsciint.2020.110160. - DOI - PMC - PubMed
    1. Krauss S.T., Forbes T.P., Jobes D. Inorganic oxidizer detection from propellants, pyrotechnics, and homemade explosive powders using gradient elution moving boundary electrophoresis. Electrophoresis. 2020;42(3):279–288. doi: 10.1002/elps.202000279. - DOI - PubMed
    1. Krauss S.T., Forbes T.P., Lawrence J.A., Gillen G., Verkouteren J.R. Detection of fuel‐oxidizer explosives utilizing portable capillary electrophoresis with wipe‐based sampling. Electrophoresis. 2020;41(16–17):1482–1490. doi: 10.1002/elps.202000094. - DOI - PubMed
General Spectroscopy: Fluorescence, Luminescence, Spectrophotometric, UV,Chemiluminescence
    1. Abuzalat O., Wong D., Park S., Kim S. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection. Nanoscale. 2020;12(25):13523–13530. doi: 10.1039/D0NR01653E. - DOI - PubMed
    1. Agranat A.J., Kabessa Y., Shemer B., Shpigel E., Schwartsglass O., Atammneh L., Uziel Y., Ejzenberg M., Mizrachi Y., Garcia Y., Perepelitsa G., Belkin S. An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Biosens. Bioelectron. 2021;185 doi: 10.1016/j.bios.2021.113253. - DOI - PubMed
    1. Ahamad M.N., Shahid M., Ahmad M., Sama F. Cu(II) MOFs based on Bipyridyls: topology, magnetism, and exploring sensing ability toward multiple nitroaromatic explosives. ACS Omega. 2019;4(4):7738–7749. doi: 10.1021/acsomega.9b00715. - DOI - PMC - PubMed
    1. Anju S., Anjana R., Vijila N., Aswathy A., Jayakrishna J., Anjitha B., Adhya S., George S. Tb-doped BSA–gold nanoclusters as a bimodal probe for the selective detection of TNT. Anal. Bioanal. Chem. 2020;412(17):4165–4172. doi: 10.1007/s00216-020-02654-0. - DOI - PubMed
    1. Babar D.G., Garje S.S. Nitrogen and phosphorus co-doped carbon dots for selective detection of nitro explosives. ACS Omega. 2020;5(6):2710–2717. doi: 10.1021/acsomega.9b03234. - DOI - PMC - PubMed
Mass Spectrometry
    1. An S., Liu S., Cao J., Lu S. Nitrogen-activated oxidation in nitrogen direct analysis in real time mass spectrometry (DART-MS0 and rapid detection of explosives using thermal desorption DART-MS. J. Am. Soc. Mass Spectrom. 2019;30(10):2092–2100. doi: 10.1007/s13361-019-02279-3. - DOI - PubMed
    1. Assis A.C.A., Caetano J., Florencio M.H., Cordeiro C. Triacetone triperoxide characterization by FT-ICR mass spectrometry: uncovering multiple forensic evidence. Forensic Sci. Int. 2019;301:37–45. doi: 10.1016/j.forsciint.2019.04.020. - DOI - PubMed
    1. Bi L., Habib A., Chen La, Xu T., Wen L. Ultra-trace level detection of nonvolatile compounds studied ultrasonic cutter blade coupled dielectric barrier discharge ionization-mass spectrometry. Talanta. 2021;222 doi: 10.1016/j.talanta.2020.121673. - DOI - PubMed
    1. Black C. Carleton University Research Virtual Environment; 2019. Exploring Applicability of Direct Analysis in Real Time with Mass Spectrometry (DART-MS) to Identify Homemade Explosive Residues Post-blast. Master’s thesis. - DOI
    1. Black C., D'Souza T., Smith J., Hearns N. Identification of post-blast explosive residues using direct-analysis-in-real-time and mass spectrometry (DART-MS) Forensic Chem. 2019;16 doi: 10.1016/j.forc.2019.100185. - DOI
Isotope Ratio Mass Spectroscopy (IRMS)
    1. Bezemer K., McLennan L., Hessels R., Schoorl J., van den Elshout J., van der Heijden A., Hulsbergen A., Koeberg M., Busby T., Yevdokimov A., de Rijke E., Schoenmakers P., Smith J., Oxley J., van Asten A. Chemical attribution of homemade explosive ETN- part II: isotope ratio mass spectrometry analysis of ETN and its precursors. Forensic Sci. Int. 2020;313 doi: 10.1016/j.forsciint.2020.110344. - DOI - PubMed
    1. Hu C., Mei H., Guo H., Yu Z., Zhu J. Purification of ammonium nitrate via recrystallization for isotopic profiling using isotope ratio mass spectrometry. Forensic Sci. Int. 2021;328 doi: 10.1016/j.forsciint.2021.111009. - DOI - PubMed
    1. Kim N.Y., Song B., Kim D., Jung M. Preliminary stable isotope analyses for propellant discrimination in shotshells. Rapid Commun. Mass Spectrom. 2021;35(9) doi: 10.1002/rcm.9072. - DOI - PubMed
FTIR
    1. Banas A., Banas K., Lim S., Loke J., Breese M. Broad range FTIR spectroscopy and multivariate statistics for high energetic materials discrimination. Anal. Chem. 2020;92(7):4788–4797. doi: 10.1021/acs.analchem.9b03676. - DOI - PubMed
    1. Banas A., Banas K., Fung Lo M., Kansiz M., Kalaiselvi S., Lim S., Loke J., Breese M. Detection of high-explosive materials within fingerprints by means of optical-photothermal infrared spectromicroscopy. Anal. Chem. 2020 doi: 10.1021/acs.analchem.0c00938. - DOI - PubMed
    1. Colon-Mercado A.M., Vazquez-Velez K.M., Caballero-Agosto E., Vallanueva-Lopez V., Infante-Casstillo R., Hernandez-Rivera S.P. Detection of high explosives samples deposited on reflective and matte substrates using mid-infrared laser spectroscopy at the grazing angle of incidence assisted by multivariate analysis. Opt. Eng. 2020;59(9) doi: 10.1117/1.OE.59.9.092011. - DOI
    1. He N., Ni Y., Teng J., Li H., Yao L., Zhao P. Identification of inorganic oxidizing salts in homemade explosives using Fourier transform infrared spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2019;221 doi: 10.1016/j.saa.2019.117164. - DOI - PubMed
    1. Itozaki H. NIR news; 2019. Near Infrared Inspection Technology of Bottled Explosive Liquid in Airports. - DOI
Raman Spectroscopy
    1. Ahmed W., Demirtas O., Ozturk M., Bek A. Monolayer assembly of multispiked gold nanoparticles for surface-enhanced Raman spectroscopy-based trace detection of dyes and explosives. ACS Appl. Nano Mater. 2020;3(7):6766–6773. doi: 10.1021/acsanm.0c01177. - DOI
    1. Amin M., Wen P., Herzog W.D., Kunz R.R. Optimization of ultraviolet Raman spectroscopy for trace explosive checkpoint screening. Anal. Bioanal. Chem. 2020;412:4495–4504. doi: 10.1007/s00216-020-02725-2. - DOI - PubMed
    1. Bykov S., Roppel R., Mao M., Asher S. 228‐nm quadrupled quasi‐three‐level Nd:GdVO4 laser for ultraviolet resonance Raman spectroscopy of explosives and biological molecules. J. Raman Spectrosc. 2020;51(12):2478–2488. doi: 10.1002/jrs.5999. - DOI
    1. Chen Z., Qin M., Xiao C. Preliminary study on double enhanced Raman scattering detection of gas phase trace explosives. IEEE Access. 2020;8:194925–194932. doi: 10.1109/ACCESS.2020.3032836. - DOI
    1. Chio W.K., Peveler W.J., Assaf K.I., Moorthy S., Nau W.M., Parkin I.P., Lee T. Selective detection of nitroexplosives using molecular recognition within self-assembled plasmonic nanojunctions. J. Phys. Chem. C. 2019;123(25):15769–15776. doi: 10.1021/acs.jpcc.9b02363. - DOI - PMC - PubMed
DSC, Thermal Analysis, TG
    1. Galan-Fryle N., Pacheco-Londono L., Figueroa Navedo A., Ortiz-Rivera W., Castro-Suarez J., Hernandez-Rivera S. Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission. Opt. Eng. 2020;59(9) doi: 10.1117/1.OE.59.9.092008. - DOI
    1. Luo L., Guo P., Jin B., Xiao Y., Zhang Q., Chu S., Peng R. An isothermal decomposition dynamics research instrument and its application in HMX/TNT/Al composite explosive. J. Therm. Anal. Calorim. 2020;139(3):2265–2272. doi: 10.1007/s10973-019-08554-5. - DOI
    1. Parker, G.R., Heatwole, E.M., Holmes, M.D., Asay, B.W., Dickson, P.M., & McAfee, J.M. Deflagration-to-detonation transition in hot HMX and HMX-based polymer-bonded explosives. Combust. Flame, 215, 295-308. 10.1016/j.combustflame.2020.01.040. - DOI
    1. Patidar L., Khichar M., Thynell S.T. A comprehensive mechanism for liquid-phase decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): thermolysis experiments and detailed kinetic modeling. Combust. Flame. 2020;212:67–78. doi: 10.1016/j.combustflame.2019.10.025. - DOI
    1. Wang Z., Cao D., Xu Z., Wang J., Chen L. Thermal safety study on the synthesis of HMX by nitrourea method. Process Saf. Environ. Protect. 2020;137:282–288. doi: 10.1016/j.psep.2020.02.013. - DOI
Nanotechnology
    1. Ahmad K., Mobin S. In: Handbook of Nanomaterials Nanocomposites for Energy and Environmental Applications. Kharissova O., Martinez L., Kharisov B., editors. 2020. Advanced function nanomaterials for explosive sensors; pp. 1–22.https://link.springer.com/referenceworkentry/10.1007%2F978-3-030-11155-7...
    1. Bharati M.S.S., Chandu B., Rao S.V. Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC Adv. 2019;9(3):1517–1525. doi: 10.1039/c8ra08462a. - DOI - PMC - PubMed
    1. Bhatt P.V., Pandey G., Tharmavaram, Tawtani D., Hussain C.M. In: Technology in Forensic Science: Sampling, Analysis, Data and Regulations. Rawtani D., Hussain C.M., editors. 2020. Nanotechnology and taggant technology in forensic science; pp. 281–301.https://onlinelibrary.wiley.com/doi/book/10.1002/9783527827688 - DOI
    1. Bhuvaneswari R., Nagarajan V., Chandiramouli R. Explosive vapor detection using novel graphdiyne nanoribbons—a first-principles investigation. Struct. Chem. 2019;31(2):709–717. doi: 10.1007/s11224-019-01456-0. - DOI
    1. Cruz J., Moraes E., Pantoja P., Pereira T., Mota G., Antonio M. Sensors using the molecular dynamics of explosives in carbon nanotubes under external uniform electric fields. J. Nanosci. Nanotechnol. 2019;19(9):5687–5691. doi: 10.1166/jnn.2019.16510. - DOI - PubMed

DetectionCanine Explosives Detection

    1. DeChant M. Texas Tech University; 2021. Training and Experience Factors Impacting Detection Dog Performance.https://ttu-ir.tdl.org/handle/2346/87982 PhD.
    1. DeGreeff L., Peranich K. Canine olfactory detection of trained explosive and narcotic odors in mixtures using a mixed odor delivery device. Forensic Sci. Int. 2021;329 doi: 10.1016/j.forsciint.2021.111059. - DOI - PubMed
    1. DeGreeff L., Katilie C.J., Johnson R.F., Vaughan S. Quantitative vapor delivery for improved canine threshold testing. Anal. Bioanal. Chem. 2021;413(3):955–966. doi: 10.1007/s00216-020-03052-2. - DOI - PubMed
    1. DeGreeff L.E., Simon A.G., Peranich K., Holness H.K., Frank K., Furton K.G. Generalization and discrimination of molecularly similar odorants in detection canines and the influence of training. Behav. Process. 2020;177 doi: 10.1016/j.beproc.2020.104148. - DOI - PubMed
    1. Gallegos S., Aviles-Rosa E., Hall N., Prada-Tiedemann P. Headspace sampling of smokeless powder odor in a dynamic airflow context. Forensic Chem. 2022;27 doi: 10.1016/j.forc.2022.100402. - DOI
LIBS Detection
    1. Andrade D.F., Pereira-Filho E.R., Amarasiriwardena D. Current trends in laser-induced breakdown spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 2021;56(2):98–114. doi: 10.1080/05704928.2020.1739063. - DOI
    1. Byram C., Moram S.S.B., Soma V.R. 2021. Wavelength Effect on Gold Nanoparticles Fabrication in Picosecond Laser Ablation and Evaluation of SERA Performance in Explosive Detection; pp. 499–502. - DOI
    1. Carter S., Clough R., Fisher A., Gibson B., Russell B., Waack J. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials. J. Anal. Atomic Spectrom. 2019;34(11):2159–2216. doi: 10.1039/C9JA90058F. - DOI
    1. Junjuri R., Gummadi A.P., Gundawar M.K. Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks. Optik. 2020;204 doi: 10.1016/j.ijleo.2019.163946. - DOI
    1. Junjuri R., Gummadi A.P., Gundawar M.K. 2021. Identification of the Explosive Mixtures Using Laser Induced Breakdown Spectroscopy (LIBS) pp. 391–394. - DOI - PubMed
Neutron
    1. Bishnoi S., Patel, Thomas R., Jilju R., Sarkar P., Hayak B. Study of tagged neutron method with laboratory D-T neutron generator for explosive detection. Eur. Phys. J. Plus. 2020;135(6):428. doi: 10.1140/epjp/s13360-020-00402-y. - DOI
    1. Han M., Jing S., Gao Y. Simulation and data analysis of a portable tagged neutron system for detection of explosives hidden in packages. Radiat. Phys. Chem. 2021;182 doi: 10.1016/j.radphyschem.2021.109361. - DOI
    1. Han M., Jing S., Gao Y., Guo Y. Experiment and MCNP simulation of a portable tagged neutron inspection system for detection of explosives in a concrete wall. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019;929:156–161. doi: 10.1016/j.nima.2019.03.069. - DOI
    1. Hossny K., Hossny A.H., Magdi s., Soliman A.Y., Hossny M. Detecting shielded explosives y coupling prompt gamma neutron activation analysis and deep neural networks. Sci. Rep. 2020;10(1) doi: 10.1038/s41598-020-70537-6. - DOI - PMC - PubMed
    1. Sardet A., Peror B., Carasco C., Sannie G., Moretto S., Nebbia Fontana C., Pino F. Performances of C-BORD’s tagged neutron inspection system for explosives and illicit drugs detection in cargo containers. IEEE Trans. Nucl. Sci. 2021;68(3):346–353. doi: 10.1109/TNS.2021.3050002. - DOI
Terahertz
    1. Ganesh D., Rao E., Venatesh M., Nagarijuna K., Vaitheesawaran G., Sahoo A., Chaudhary A. Time-domain terahertz spectroscopy and density functional theory studies of nitro/nitrogen-rich aryl-tetrazole derivatives. ACS Omega. 2020;5(6):2541–2551. doi: 10.1021/acsomega.8b03383. - DOI - PMC - PubMed
    1. Khan N., Vickers A., Abas N., Kalair A.R. Design of an optical terahertz generator. J. Laser Sci. Fund. Theory Anal. Methods. 2019;1(3/4):225–252. https://www.oldcitypublishing.com/wp-content/uploads/2019/06/IJLSv1n3-4p...
    1. Kidavu A., Nagaraju N., Damarala G., Chaudhary A. Workshop on Recent Advances in Photonics, Guwahati, India. 2019. Scattering analysis of explosive materials mixed in Teflon matrix in THz regime. - DOI
    1. Kumar P.N., Ganesh D., Nagaraju M., Chaudhary A.K. 2021. Detection of explosives and non-explosive materials from a soil matrix using 0.5 and 1.5. THz radiation; pp. 889–893. - DOI
    1. Liu Q., Li X., Deng H., Sun J., Guan D., Luo L., Zhang Y., Shang L. Determination of moisture content in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine using terahertz time-domain spectroscopy. Opt. Eng. 2020;59(8) doi: 10.1117/1.OE.59.8.084102. - DOI
Nuclear Techniques
    1. Chen C. Case Western Reserve University; 2020. Nuclear Quadruple Resonance and Low-Field Nuclear Magnetic Resonance for Materials Authentication.https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:case1567518073... Doctoral dissertation.
    1. Joubert V., Silvestre V., Ladroue V., Besacier F., Blondel P., Akoka S., Baguet E., Remaud G. Forensic application of position-specific isotopic analysis of trinitrotoluene (TNT) by NMR to determine 13C and 15N intramolecular isotopic profiles. Talanta. 2020;213 doi: 10.1016/j.talanta.2020.120819. - DOI - PubMed
    1. Munjal P., Sharma B., Sethi J.R., Dalal A., Gholap S.L. Identification and analysis of organic explosives from post-blast debris by nuclear magnetic resonance. J. Hazard Mater. 2021;403 doi: 10.1016/j.jhazmat.2020.124003. - DOI - PubMed
    1. Nevzorov A., Orlov A., Stankevich D. Machine learning in NQR TNT express detection system. J. Magn. Reson. 2019;308 doi: 10.1016/j.jmr.2019.106596. - DOI - PubMed
    1. Sorte E.G. Sandia National Laboratories; 2020. Mobile Cross-Polarized NQR: Buried Explosive Detection from a Safe Distance (SANDIA20213047) - DOI
X-Ray
    1. Manerikar A., Li F., Kak A. DEBISim: a simulation pipeline for dual energy CT-based baggage inspection systems. J. X Ray Sci. Technol. 2021;29(2):259–285. doi: 10.3233/XST-200808. - DOI - PubMed
    1. Miller E.A., Campbell L.W., Deshmukh N., Gilbert A.J., Ivanusa P., Jacob R.E., Kasparek D.M., McCall J.D., Munoz E., Owsley S.L., Jr., Silvers K.L., White T.A., Wittman R.S., Zalvadia M.A. Gratings-based phase contract x-ray imaging: progress towards a prototype system for explosives detection. Proc. SPIE: Anomaly Detect. Imag. X-rays (ADIX) VI. 2021;11738 doi: 10.1117/12.2589938. - DOI
Ion Mobility Spectroscopy
    1. Amo-Gonzalez M., Perez S., Delgado R., Arranz G., Carnicero I. Tandem ion mobility spectrometry for the detection of traces of explosives in cargo at concentrations of parts per quadrillion. Anal. Chem. 2019;91(21):14009–14018. doi: 10.1021/acs.analchem.9b03589. - DOI - PubMed
    1. Anttalainen O., Puton J., Kontunen A., Karjalanen M., Kumpulainen P., Oksala N. Possible strategy to use differential mobility spectrometry in real time applications. Int. J. Ion Mobil. Spectrom. 2019;23:1–8. doi: 10.1007/s12127-019-00251-1. - DOI
    1. Bohnhorst A., Hitzemann M., Lippman M., Kirk A.T., Zimmermann S. Enhanced resolving power by moving field ion mobility spectrometry. Anal. Chem. 2020;92(19):12967–12974. doi: 10.1021/acs.analchem.0c01653. - DOI - PubMed
    1. Chilluwal U. New Mexico State University; 2020. Reactive Tandem Ion Mobility Spectrometry for Selective Detection of Explosives in Mixtures (Publication No. 28157920) PhD.
    1. Fisher D., Lukow S.R., Berezutskiy G., Gil I., Levy T., Zeiri Y. Machine learning improves trace explosive selectivity: application to nitrate-based explosives. J. Phys. Chem. A. 2020;124(46):9656–9664. doi: 10.1021/acs.jpca.0c05909. - DOI - PubMed
Novel Detection
    1. Agrawal A., Hussain C. In: Smartphone-based Detection Devices: Emerging Trends in Analytical Techniques. Hussain C., editor. Elsevier; 2021. Smartphone-based detection of explosives; pp. 399–416. - DOI
    1. Algharagholy L., Sadeghi H., Al-Backri A. Selective sensing of 2,4,6-trinitrotoluene and triacetone triperoxide using carbon/boron nitride heteronanotubes. Mater. Today Commun. 2021;28 doi: 10.1016/j.mtcomm.2021.102739. - DOI
    1. Al-Mousawi A. Magnetic Explosives Detection System (MEDS) based on wireless sensor network and machine learning. Measurement. 2020;151 doi: 10.1016/j.measurement.2019.107112. - DOI
    1. Alsaleh S., Barron L., Sturzenbaum S. Perchlorate detection via an invertebrate biosensor. Anal. Methods. 2021;13(3):327–336. doi: 10.1039/D0AY01732A. - DOI - PubMed
    1. Andrews M.R., Collet C., Wolff A., Hollands C. Resonant acoustic mixing: processing and safety. Propellants, Explos. Pyrotech. 2020;45(1):77–86. doi: 10.1002/prep.201900280. - DOI
Stand Off
    1. Ayoub H., El-Sherif A., Elbeih A. Hyperspectral imaging and remote trace detection of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) compared with traditional explosives using laser induced fluorescence. Defence Technol. 2021;17(5):1609–1616. doi: 10.1016/j.dt.2020.09.008. - DOI
    1. Breshike C.J., Kendziora C.A., Furstenberg R., Huffman T.J., Nguyen V.K., Budack N., Yoon Y., McGill R.A. Hyperspectral imaging using active infrared backscatter spectroscopy for detection of trace explosives. Opt. Eng. 2020;59(9) doi: 10.1117/1.OE.59.9.092009. - DOI
    1. Datskos P.G., Morales-Rodriguez M., Senesac L.R. Standoff imaging of trace RDX using quantum cascade lasers. IEEE Sensor. J. 2020;20(1):149–154. doi: 10.1109/JSEN.2019.2940883. - DOI
    1. Gallo E., Cantu L., Duschek F. Remote Raman spectroscopy of explosive precursors. Opt. Eng. 2021;60(8) doi: 10.1117/1.OE.60.8.084108. - DOI
    1. Gasser C., Goschl M., Ofner J., Lendl B. Stand-off hyperspectral Raman imaging and random decision forest classification: a potent duo for the fast remote identification of explosives. Anal. Chem. 2019;91(12):7712–7718. doi: 10.1021/acs.analchem.9b00890. - DOI - PubMed
Environmental
    1. Ariyarathna T., Ballentine M., Vlahos P., Smith R., Cooper C., Bojlke J., Groshens T., Tobias C. Degradation of RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) in contrasting coastal marine habitats: subtidal non-vegetated (sand), subtidal vegetated (silt/eel grass), and intertidal marsh. Sci. Total Environ. 2020 doi: 10.1016/j.scitotenv.2020.140800. - DOI - PubMed
    1. Avellaneda H., Arbeli Z., Teran W., Roldan F. Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes. World J. Microbiol. Biotechnol. 2020;36(12):190. doi: 10.1007/s11274-020-02962-8. - DOI - PubMed
    1. Behera R., Biswal T., Panda R. In: Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERA 2020. Acharya S., Mishra D., editors. Springer; 2021. pp. 305–315. - DOI
    1. Boyd T.J., Cuenca R.H., Hagimoto Y., Michalsen M.M., Tobias C., Popovic J. U.S. Naval Research Laboratory; 2021. Stable Carbon Isotopes for Trace in Situ RDX Remediation.https://apps.dtic.mil/sti/citations/AD1122062 (NRL/6180/MR—2021/1)
    1. Cary T., Rylott E., Zhang L., Routsong R., Palazzo A., Strand S., Bruce N. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nat. Biotechnol. 2021;39:1216–1219. doi: 10.1038/s41587-021-00909-4. - DOI - PubMed
Other (Safety, Definitions, Etc):
    1. Abraham M.H., Acree W.E., Liu X. Descriptors for high-energy nitro compounds: estimation of thermodynamic, physicochemical and environmental properties. Propellants, Explos. Pyrotech. 2021;46(2):267–279. doi: 10.1002/prep.202000117. - DOI
    1. Aduev B., Nurmukhametov D., Liskov I., Zvekov A. RDX-Al and PETN-Al composites' glow spectral kinetics at the explosion initiated with laser pulse. Combust. Flame. 2021;223:376–381. doi: 10.1016/j.combustflame.2020.10.016. - DOI
    1. Aduev B.P., Nurmukhametov D.R., Liskov I.Y., Tupitsyn A.V., Belokurov G.M. Laser pulse initiation of RDX-al and PETN-Al composites explosion. Combust. Flame. 2020;216:468–471. doi: 10.1016/j.combustflame.2019.10.037. - DOI
    1. Ageev M.V., Vedernikov Y.N., Zegrya G.G., Mazur A.S., Poberezhnaya U.M., Popov V.K., Savenkov G.G. Properties of two and three-component explosive compositions based on porous silicon. Russ. J. Phys. Chem. B. 2021;15(2):259–265. doi: 10.1134/S1990793121020020. - DOI
    1. Al-Hajj S., Dhaini H.R., Mondello S., Kaafarani H., Kobeissy F., DePalma R.G. Beirut ammonium nitrate blast: analysis, review, and recommendations. Front. Public Health. 2021;9 doi: 10.3389/fpubh.2021.657996. - DOI - PMC - PubMed

Final Notes (Patents etc)

    1. Afilani, T. (2020). Dynamic selective polarization matching for remote detection smokeless gunpowder (U.S. Patent 2020191747A1). U.S. Patent and Trademark Office. https://patents.google.com/patent/US20200191747A1/en.
    1. Alexander, T.B. & Price, D.W. (2020). High energy reduced sensitivity tactical explosives (U.S. Patent No. 20200062671A1). U.S. Patent and Trademark Office. https://patents.google.com/patent/US20200062671A1/en..
    1. Apblett, A.W., Materer, N.F., & Shaikh, S. (2019). Explosive-containing porous materials as non-detonable training aid (U.S. Patent No. 2,019,018,687,8A1). Washington, DC: U.S. Patent and Trademark Office. https://patents.google.com/patent/US20190186878A1/en.
    1. Bell, W.T. & Rairigh, J.G. (2020). Mini-severing and back-off tool with pressure balanced explosives (U.S. Patent No. 10,538,984 B2). U.S. Patent and Trademark Office. https://www.lens.org/images/patent/US/10538984/B2/US_10538984_B2.pdf.
    1. Blaha, J., Dupac, J., Zastera, M., & Mazl, R. (2020). Explosives detector and method for detecting explosives (U.S. Patent No. 10551304B2). U.S. Patent and Trademark Office. https://patents.google.com/patent/US10551304B2/en.

LinkOut - more resources