Interpol review of the analysis and detection of explosives and explosives residues
- PMID: 36685733
- PMCID: PMC9845958
- DOI: 10.1016/j.fsisyn.2022.100298
Interpol review of the analysis and detection of explosives and explosives residues
Similar articles
-
Interpol review of detection and characterization of explosives and explosives residues 2016-2019.Forensic Sci Int Synerg. 2020 Jun 17;2:670-700. doi: 10.1016/j.fsisyn.2020.01.020. eCollection 2020. Forensic Sci Int Synerg. 2020. PMID: 33385149 Free PMC article. Review.
-
Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects.Anal Bioanal Chem. 2009 Sep;395(2):283-300. doi: 10.1007/s00216-009-2802-0. Epub 2009 May 6. Anal Bioanal Chem. 2009. PMID: 19418042
-
Interpol review of fire investigation 2016-2019.Forensic Sci Int Synerg. 2020 Mar 10;2:368-381. doi: 10.1016/j.fsisyn.2020.01.005. eCollection 2020. Forensic Sci Int Synerg. 2020. PMID: 33385136 Free PMC article. Review.
-
Genetically engineered microorganisms for the detection of explosives' residues.Front Microbiol. 2015 Oct 29;6:1175. doi: 10.3389/fmicb.2015.01175. eCollection 2015. Front Microbiol. 2015. PMID: 26579085 Free PMC article. Review.
-
Improved determination of femtogram-level organic explosives in multiple matrices using dual-sorbent solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry.Talanta. 2019 Oct 1;203:65-76. doi: 10.1016/j.talanta.2019.05.047. Epub 2019 May 11. Talanta. 2019. PMID: 31202351
Cited by
-
Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS).Sensors (Basel). 2023 Oct 19;23(20):8586. doi: 10.3390/s23208586. Sensors (Basel). 2023. PMID: 37896679 Free PMC article.
-
Sensitive Detection of Trace Explosives by a Self-Assembled Monolayer Sensor.Micromachines (Basel). 2023 Nov 29;14(12):2179. doi: 10.3390/mi14122179. Micromachines (Basel). 2023. PMID: 38138348 Free PMC article.
-
A survey of explosive traces in public places.J Forensic Sci. 2025 Jul;70(4):1450-1459. doi: 10.1111/1556-4029.70042. Epub 2025 May 7. J Forensic Sci. 2025. PMID: 40339147 Free PMC article.
-
Plasmonic nanoparticle sensors: current progress, challenges, and future prospects.Nanoscale Horiz. 2024 Nov 19;9(12):2085-2166. doi: 10.1039/d4nh00226a. Nanoscale Horiz. 2024. PMID: 39240539 Free PMC article. Review.
-
Time-Efficient SNR Optimization of WMS-Based Gas Sensor Using a Genetic Algorithm.Sensors (Basel). 2024 Mar 13;24(6):1842. doi: 10.3390/s24061842. Sensors (Basel). 2024. PMID: 38544105 Free PMC article.
References
Review Articles
-
- Amali R.K.A., Lim H.N., Ibrahim I., Huang N.M., Zainal Z., Ahmad S.A.A. Significance of nanomaterials in electrochemical sensors for nitrate detection: a review. Trends Environ. Anal. Chem. 2021;31 doi: 10.1016/j.teac.2021.e00135. - DOI
-
- Babrauskas V., Leggett D. Thermal decomposition of ammonium nitrate. Fire Mater. 2019;44(2):250–268. doi: 10.1002/fam.2797. - DOI
-
- Baig N., Kammakakam & I., Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2(6):1821–1871. doi: 10.1039/D0MA00807A. - DOI
Explosive Standards and References, Laboratory Quality Control, Contamination Prevention
-
- ASTM International . Vol. 15.08. ASTM International; 2021. (ASTM E2520-21: Standard Practice for Measuring and Scoring Performance of Trace Explosive Chemical Detectors. Annual Book of ASTM Standards). - DOI
-
- ASTM International . Vol. 15.08. ASTM International; 2021. (ASTM E2677-20: Standard Test Method for Estimating Limits of Detection in Trace Detectors for Explosives and Drugs of Interest. Annual Book of ASTM). - DOI
-
- Bose A. CRC Press; 2022. Military Pyrotechnics.
-
- Collett G. Action on Armed Violence; 2021. An Examination of the Precursor Chemicals used in the Manufacture of Explosive Compositions Found within Improvised Explosive Devices (IEDs)https://cd-geneve.delegfrance.org/AOAV-Publication-of-two-reports-on-IEDs Online at.
-
- Klapotke T. second ed. De Gruyter; 2021. Energetic Materials Encyclopedia. Vols. 1-3. - DOI
Sampling and Concentration of Explosive Traces
-
- Avissar Y., Zelkowicz A., Rossin A., Kirshenbaum Y., Tenne D., Grafit A. An efficient extraction method for post-blast traces of organic explosives. J. Forensic Ident. 2021;71(1):35–48.
-
- Benhammda A., Trache D., Kesraoui M., Tarchoun A., Chelouche S., Mezroua A. Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim. Acta. 2020;686 doi: 10.1016/j.tca.2020.178570. - DOI
-
- Cardoso R.M., Castro S.V.F., Silva M.N.T., Lima A.P., Santana M.H.P., Nossol E., Silva R.A.B., Richter E.M., Paixao T.R.L.C., Munoz R.A.A. 3D-printed flexible device combining sampling and detection of explosives. Sensor. Actuator. B Chem. 2019;292:308–313. doi: 10.1016/j.snb.2019.04.126. - DOI
Commercial Explosives:
-
- Ali F., Roy M., Pingua B., Mukherjee R., Agarwal L., Singh P. Utilization of waste lubricant oil in fuel phase of ANFO explosives: its field applications and environmental impact. Propellants, Explos. Pyrotech. 2021;46(9):1397–1404. doi: 10.1002/prep.202100011. - DOI
-
- Anderson E., Chiquete C., Jackson S., Chicas R., Short M. The comparative effect of HMX content on the detonation performance characterization of PBX 9012 and PBX 9501 high explosives. Combust. Flame. 2021;230 doi: 10.1016/j.combustflame.2021.111415. - DOI
-
- Artyukhov A., Berladir K., Krmela J. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), Sumy, Ukraine. 2020, November 9-13. Technological basis for the production of ammonium nitrate with a nanoporous surface and near-surface structure in combined flow motion devices [Paper presentation] - DOI
-
- Arumugachamy Z., Pandian P., Kadarkaraithangam J. Experimentation on minimum ignition temperature for boron blended fireworks flash powder dust cloud at normal and inert environmental conditions. Fire Mater. 2022;46(2):410–419. doi: 10.1002/fam.2977. - DOI
-
- Bao, P., Li, J., Han, Z., Ma, H., & Wang, Comparing the impact safety between two HMX-based PBX with different binders. FirePhysChem, 1(3), 139-145. 10.1016/j.fpc.2021.08.002. - DOI
Homemade Explosives:
-
- Baldaino J., Ommen D., Saunders, Hietpas J., Buscaglia J. Characterization and differentiation of aluminum powders used in improvised explosive devices. Part 1: proof of concept of the utility of particle micromorphometry. J. Forensic Sci. 2021;66(1):83–95. doi: 10.1111/1556-4029.14564. - DOI - PubMed
-
- Bezemer K., McLennan L., van Duin L., Kuijpers C., Koeberg M., van den Elshout J., van der Heijden A., Busby T., Yevdokimov A., Schoenmakers P., Smith J., Oxley J., can Asten A. Chemical attribution of the home-made explosive ETN – Part I: liquid chromatography-mass spectrometry analysis of partially nitrated erythritol impurities. Forensic Sci. Int. 2020;307 doi: 10.1016/j.forsciint.2019.110102. - DOI - PubMed
-
- D'Uva J., DeTata D., Fillingham R., Dunsmore R., Lewis S.W. Synthesis and characterisation of homemade urea nitrate explosive from commercial sources of urea. Forensic Chem. 2021;26 doi: 10.1016/j.forc.2021.100369. - DOI
-
- Freye C., Kinman W., Tiemann C., McDonald D., Manner V., Bowden P., Tappan B., Greenfield M. Linking chemical precursors to the synthesis of Erythritol Tetranitrate. Forensic Chem. 2020 doi: 10.1016/j.forc.2020.100246. - DOI
-
- Horvath T., Ember I. Characteristics of homemade explosive materials and their possibilities of their identification. Rev. Acad. Fortelor Terestre. 2021;26(2):100–107. doi: 10.2478/raft-2021-0015. - DOI
Other Explosives including Novel or New Explosives:
-
- Abraham B.M., Waitheeswaran G. From van der Waals interactions to structures and properties of 3,-dinitro-5,-bis-1,2,4-triazole-1,-diolate based energetic materials. Mater. Chem. Phys. 2020;240 doi: 10.1016/j.matchemphys.2019.122175. - DOI
-
- Abraham B.M., Yedukondalu N., Vaitheeswaran G. High-pressure structural and electronic properties of potassium-based green primary explosives. J. Electron. Mater. 2021;50(4):1581–1590. doi: 10.1007/s11664-020-08262-z. - DOI
-
- Agrawal J., Dodke V. Some novel high energy materials for improved performance. Zeitschrift fur anorganische und allgemeine Chemie. 2021;647(19):1856–1882. doi: 10.1002/zaac.202100144. - DOI
-
- Anderson E., Chiquete C., Jackson S. Experimental measurement of energy release from an initiating layer in an insensitive explosive. Proc. Combust. Inst. 2021;38(3):3733–3740. doi: 10.1016/j.proci.2020.07.150. - DOI
-
- Anniyappan M., Varma K., Amit R., Nair J. 1-methyl-2,4,5-trinitroimidazole (MTNI), a melt-cast explosive: synthesis and studies on thermal behavior in presence of explosive ingredients. J. Energetic Mater. 2019 doi: 10.1080/07370652.2019.1669735. - DOI
Instrumental Analysis of ExplosivesLC/HPLC/UPLC
-
- Chen J., Ding H., Li J., Chen Y., Liu Y., Zhao X. Development and validation of HPLC method for DAAF and its application in quality control and environmental monitoring. Propellants, Explos. Pyrotech. 2020;45(10):1580–1589. doi: 10.1002/prep.202000018. - DOI
-
- Ding H., Zhao H., Chen J., Zhang Z., Liu Y. Development and validation of a HPLC-UV method for DATNBI and its' application in quality control. J. Liq. Chromatogr. Relat. Technol. 2021;44(3–4):220–228. doi: 10.1080/10826076.2021.1884569. - DOI
-
- Freye C., Nguyen T., Tappan B. Investigation of the impurities in erythritol tetranitrate (ETN) using UHPLC-QTOF. Propellants, Explos. Pyrotech. 2021;46(10):1555–1560. doi: 10.1002/prep.202100193. - DOI
-
- Freye C.E., Lease N., Brown G.W., Tappan B.C., Thompson D.G., Rosales C.J., Larson S.A. Identification of blue discoloration in PBX 9404 using ultrahigh pressure liquid chromatography with quadrupole time-of-flight mass spectrometry. Propellants, Explos. Pyrotech. 2021;46(3):355–359. doi: 10.1002/prep.202000230. - DOI
Ion Chromatography
-
- Beal S., Taylor S., Crouch R., Bednar A. U.S. Army Corps of Engineers; 2020. Environmental Analysis of Aqueous 3-nitro-1,2,4-Triazol-5-One (NTO) by Ion Chromatography with Conductivity Detection (ERDC TR-20-13) - DOI
-
- Gallidabino M.D., Irlam R.C., Salt M.C., O'Donnell M., Beardah M.S., Barron L.P. Targeted and non-targeted forensic profiling of black powder substitutes and gunshot residue using gradient ion chromatography – high resolution mass spectrometry (IC-HRMS) Anal. Chim. Acta. 2019;1072:1–14. doi: 10.1016/j.aca.2019.04.048. - DOI - PubMed
-
- Hartel M.A.C., Klapotke T.M., Stierstorfer J., Zehetner L. Vapor pressure of linear nitrate esters determined by transpiration method in combination with VO-GC/MS. Propellants, Explos. Pyrotech. 2019;44(4):484–492. doi: 10.1002/prep.201800133. - DOI
-
- Harvey A. University of York; 2019. Detection and Identification of Chemical Warfare Agents and Explosives in Complex Matrices. Doctoral Dissertation.
-
- Hutchinson J.P., Johns C., Dicinoski G.W., Jones L., Breadmore M.C., Haddad P.R. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Wiley; 2020. Identification of improvised inorganic explosives devices by analysis of postblast residues using ion chromatography and capillary electrophoresis. - DOI
Gas Chromatography
-
- Cruse C., Goodpaster J. Optimization of gas chromatography/vacuum ultraviolet (GC/VUV) spectroscopy for explosive compounds and application to post-blast debris. Forensic Chem. 2021;26 doi: 10.1016/j.forc.2021.100362. - DOI
-
- Lara-Ibeas I., Cuevas A., Le Calve S. Recent developments and trends in miniaturized gas preconcentrators for portable gas chromatography systems: a review. Sensor. Actuator. B Chem. 2021;346 doi: 10.1016/j.snb.2021.130449. - DOI
Capillary Electrophoresis
-
- Bezemer K., van Duin L., Martin-Alberca C., Somsen G., Schoenmakers P., Haselberg R., van Asten A. Rapid forensic chemical classification of confiscated flash banger fireworks using capillary electrophoresis. Forensic Chem. 2019;16 doi: 10.1016/j.forc.2019.100187. - DOI
-
- Bezemer K.D.B., Forbes T.P., Hulsbergen A.W.C., Verkouteren J., Krauss S.T., Kobeberg M., Schoenmakers P.J., Gillen G., van Asten A.C. Emerging techniques for the detection of pyrotechnic residues from seized postal packages containing fireworks. Forensic Sci. Int. 2020;308 doi: 10.1016/j.forsciint.2020.110160. - DOI - PMC - PubMed
General Spectroscopy: Fluorescence, Luminescence, Spectrophotometric, UV,Chemiluminescence
-
- Agranat A.J., Kabessa Y., Shemer B., Shpigel E., Schwartsglass O., Atammneh L., Uziel Y., Ejzenberg M., Mizrachi Y., Garcia Y., Perepelitsa G., Belkin S. An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Biosens. Bioelectron. 2021;185 doi: 10.1016/j.bios.2021.113253. - DOI - PubMed
Mass Spectrometry
-
- Black C. Carleton University Research Virtual Environment; 2019. Exploring Applicability of Direct Analysis in Real Time with Mass Spectrometry (DART-MS) to Identify Homemade Explosive Residues Post-blast. Master’s thesis. - DOI
-
- Black C., D'Souza T., Smith J., Hearns N. Identification of post-blast explosive residues using direct-analysis-in-real-time and mass spectrometry (DART-MS) Forensic Chem. 2019;16 doi: 10.1016/j.forc.2019.100185. - DOI
Isotope Ratio Mass Spectroscopy (IRMS)
-
- Bezemer K., McLennan L., Hessels R., Schoorl J., van den Elshout J., van der Heijden A., Hulsbergen A., Koeberg M., Busby T., Yevdokimov A., de Rijke E., Schoenmakers P., Smith J., Oxley J., van Asten A. Chemical attribution of homemade explosive ETN- part II: isotope ratio mass spectrometry analysis of ETN and its precursors. Forensic Sci. Int. 2020;313 doi: 10.1016/j.forsciint.2020.110344. - DOI - PubMed
FTIR
-
- Colon-Mercado A.M., Vazquez-Velez K.M., Caballero-Agosto E., Vallanueva-Lopez V., Infante-Casstillo R., Hernandez-Rivera S.P. Detection of high explosives samples deposited on reflective and matte substrates using mid-infrared laser spectroscopy at the grazing angle of incidence assisted by multivariate analysis. Opt. Eng. 2020;59(9) doi: 10.1117/1.OE.59.9.092011. - DOI
-
- Itozaki H. NIR news; 2019. Near Infrared Inspection Technology of Bottled Explosive Liquid in Airports. - DOI
Raman Spectroscopy
-
- Ahmed W., Demirtas O., Ozturk M., Bek A. Monolayer assembly of multispiked gold nanoparticles for surface-enhanced Raman spectroscopy-based trace detection of dyes and explosives. ACS Appl. Nano Mater. 2020;3(7):6766–6773. doi: 10.1021/acsanm.0c01177. - DOI
-
- Bykov S., Roppel R., Mao M., Asher S. 228‐nm quadrupled quasi‐three‐level Nd:GdVO4 laser for ultraviolet resonance Raman spectroscopy of explosives and biological molecules. J. Raman Spectrosc. 2020;51(12):2478–2488. doi: 10.1002/jrs.5999. - DOI
-
- Chen Z., Qin M., Xiao C. Preliminary study on double enhanced Raman scattering detection of gas phase trace explosives. IEEE Access. 2020;8:194925–194932. doi: 10.1109/ACCESS.2020.3032836. - DOI
DSC, Thermal Analysis, TG
-
- Galan-Fryle N., Pacheco-Londono L., Figueroa Navedo A., Ortiz-Rivera W., Castro-Suarez J., Hernandez-Rivera S. Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission. Opt. Eng. 2020;59(9) doi: 10.1117/1.OE.59.9.092008. - DOI
-
- Luo L., Guo P., Jin B., Xiao Y., Zhang Q., Chu S., Peng R. An isothermal decomposition dynamics research instrument and its application in HMX/TNT/Al composite explosive. J. Therm. Anal. Calorim. 2020;139(3):2265–2272. doi: 10.1007/s10973-019-08554-5. - DOI
-
- Parker, G.R., Heatwole, E.M., Holmes, M.D., Asay, B.W., Dickson, P.M., & McAfee, J.M. Deflagration-to-detonation transition in hot HMX and HMX-based polymer-bonded explosives. Combust. Flame, 215, 295-308. 10.1016/j.combustflame.2020.01.040. - DOI
-
- Patidar L., Khichar M., Thynell S.T. A comprehensive mechanism for liquid-phase decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): thermolysis experiments and detailed kinetic modeling. Combust. Flame. 2020;212:67–78. doi: 10.1016/j.combustflame.2019.10.025. - DOI
-
- Wang Z., Cao D., Xu Z., Wang J., Chen L. Thermal safety study on the synthesis of HMX by nitrourea method. Process Saf. Environ. Protect. 2020;137:282–288. doi: 10.1016/j.psep.2020.02.013. - DOI
Nanotechnology
-
- Ahmad K., Mobin S. In: Handbook of Nanomaterials Nanocomposites for Energy and Environmental Applications. Kharissova O., Martinez L., Kharisov B., editors. 2020. Advanced function nanomaterials for explosive sensors; pp. 1–22.https://link.springer.com/referenceworkentry/10.1007%2F978-3-030-11155-7...
-
- Bhatt P.V., Pandey G., Tharmavaram, Tawtani D., Hussain C.M. In: Technology in Forensic Science: Sampling, Analysis, Data and Regulations. Rawtani D., Hussain C.M., editors. 2020. Nanotechnology and taggant technology in forensic science; pp. 281–301.https://onlinelibrary.wiley.com/doi/book/10.1002/9783527827688 - DOI
-
- Bhuvaneswari R., Nagarajan V., Chandiramouli R. Explosive vapor detection using novel graphdiyne nanoribbons—a first-principles investigation. Struct. Chem. 2019;31(2):709–717. doi: 10.1007/s11224-019-01456-0. - DOI
DetectionCanine Explosives Detection
-
- DeChant M. Texas Tech University; 2021. Training and Experience Factors Impacting Detection Dog Performance.https://ttu-ir.tdl.org/handle/2346/87982 PhD.
-
- Gallegos S., Aviles-Rosa E., Hall N., Prada-Tiedemann P. Headspace sampling of smokeless powder odor in a dynamic airflow context. Forensic Chem. 2022;27 doi: 10.1016/j.forc.2022.100402. - DOI
LIBS Detection
-
- Andrade D.F., Pereira-Filho E.R., Amarasiriwardena D. Current trends in laser-induced breakdown spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 2021;56(2):98–114. doi: 10.1080/05704928.2020.1739063. - DOI
-
- Byram C., Moram S.S.B., Soma V.R. 2021. Wavelength Effect on Gold Nanoparticles Fabrication in Picosecond Laser Ablation and Evaluation of SERA Performance in Explosive Detection; pp. 499–502. - DOI
-
- Carter S., Clough R., Fisher A., Gibson B., Russell B., Waack J. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials. J. Anal. Atomic Spectrom. 2019;34(11):2159–2216. doi: 10.1039/C9JA90058F. - DOI
-
- Junjuri R., Gummadi A.P., Gundawar M.K. Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks. Optik. 2020;204 doi: 10.1016/j.ijleo.2019.163946. - DOI
Neutron
-
- Bishnoi S., Patel, Thomas R., Jilju R., Sarkar P., Hayak B. Study of tagged neutron method with laboratory D-T neutron generator for explosive detection. Eur. Phys. J. Plus. 2020;135(6):428. doi: 10.1140/epjp/s13360-020-00402-y. - DOI
-
- Han M., Jing S., Gao Y. Simulation and data analysis of a portable tagged neutron system for detection of explosives hidden in packages. Radiat. Phys. Chem. 2021;182 doi: 10.1016/j.radphyschem.2021.109361. - DOI
-
- Han M., Jing S., Gao Y., Guo Y. Experiment and MCNP simulation of a portable tagged neutron inspection system for detection of explosives in a concrete wall. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019;929:156–161. doi: 10.1016/j.nima.2019.03.069. - DOI
-
- Sardet A., Peror B., Carasco C., Sannie G., Moretto S., Nebbia Fontana C., Pino F. Performances of C-BORD’s tagged neutron inspection system for explosives and illicit drugs detection in cargo containers. IEEE Trans. Nucl. Sci. 2021;68(3):346–353. doi: 10.1109/TNS.2021.3050002. - DOI
Terahertz
-
- Khan N., Vickers A., Abas N., Kalair A.R. Design of an optical terahertz generator. J. Laser Sci. Fund. Theory Anal. Methods. 2019;1(3/4):225–252. https://www.oldcitypublishing.com/wp-content/uploads/2019/06/IJLSv1n3-4p...
-
- Kidavu A., Nagaraju N., Damarala G., Chaudhary A. Workshop on Recent Advances in Photonics, Guwahati, India. 2019. Scattering analysis of explosive materials mixed in Teflon matrix in THz regime. - DOI
-
- Kumar P.N., Ganesh D., Nagaraju M., Chaudhary A.K. 2021. Detection of explosives and non-explosive materials from a soil matrix using 0.5 and 1.5. THz radiation; pp. 889–893. - DOI
-
- Liu Q., Li X., Deng H., Sun J., Guan D., Luo L., Zhang Y., Shang L. Determination of moisture content in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine using terahertz time-domain spectroscopy. Opt. Eng. 2020;59(8) doi: 10.1117/1.OE.59.8.084102. - DOI
Nuclear Techniques
-
- Chen C. Case Western Reserve University; 2020. Nuclear Quadruple Resonance and Low-Field Nuclear Magnetic Resonance for Materials Authentication.https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:case1567518073... Doctoral dissertation.
-
- Joubert V., Silvestre V., Ladroue V., Besacier F., Blondel P., Akoka S., Baguet E., Remaud G. Forensic application of position-specific isotopic analysis of trinitrotoluene (TNT) by NMR to determine 13C and 15N intramolecular isotopic profiles. Talanta. 2020;213 doi: 10.1016/j.talanta.2020.120819. - DOI - PubMed
-
- Sorte E.G. Sandia National Laboratories; 2020. Mobile Cross-Polarized NQR: Buried Explosive Detection from a Safe Distance (SANDIA20213047) - DOI
X-Ray
-
- Miller E.A., Campbell L.W., Deshmukh N., Gilbert A.J., Ivanusa P., Jacob R.E., Kasparek D.M., McCall J.D., Munoz E., Owsley S.L., Jr., Silvers K.L., White T.A., Wittman R.S., Zalvadia M.A. Gratings-based phase contract x-ray imaging: progress towards a prototype system for explosives detection. Proc. SPIE: Anomaly Detect. Imag. X-rays (ADIX) VI. 2021;11738 doi: 10.1117/12.2589938. - DOI
Ion Mobility Spectroscopy
-
- Anttalainen O., Puton J., Kontunen A., Karjalanen M., Kumpulainen P., Oksala N. Possible strategy to use differential mobility spectrometry in real time applications. Int. J. Ion Mobil. Spectrom. 2019;23:1–8. doi: 10.1007/s12127-019-00251-1. - DOI
-
- Chilluwal U. New Mexico State University; 2020. Reactive Tandem Ion Mobility Spectrometry for Selective Detection of Explosives in Mixtures (Publication No. 28157920) PhD.
Novel Detection
-
- Agrawal A., Hussain C. In: Smartphone-based Detection Devices: Emerging Trends in Analytical Techniques. Hussain C., editor. Elsevier; 2021. Smartphone-based detection of explosives; pp. 399–416. - DOI
-
- Algharagholy L., Sadeghi H., Al-Backri A. Selective sensing of 2,4,6-trinitrotoluene and triacetone triperoxide using carbon/boron nitride heteronanotubes. Mater. Today Commun. 2021;28 doi: 10.1016/j.mtcomm.2021.102739. - DOI
-
- Al-Mousawi A. Magnetic Explosives Detection System (MEDS) based on wireless sensor network and machine learning. Measurement. 2020;151 doi: 10.1016/j.measurement.2019.107112. - DOI
-
- Andrews M.R., Collet C., Wolff A., Hollands C. Resonant acoustic mixing: processing and safety. Propellants, Explos. Pyrotech. 2020;45(1):77–86. doi: 10.1002/prep.201900280. - DOI
Stand Off
-
- Ayoub H., El-Sherif A., Elbeih A. Hyperspectral imaging and remote trace detection of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) compared with traditional explosives using laser induced fluorescence. Defence Technol. 2021;17(5):1609–1616. doi: 10.1016/j.dt.2020.09.008. - DOI
-
- Breshike C.J., Kendziora C.A., Furstenberg R., Huffman T.J., Nguyen V.K., Budack N., Yoon Y., McGill R.A. Hyperspectral imaging using active infrared backscatter spectroscopy for detection of trace explosives. Opt. Eng. 2020;59(9) doi: 10.1117/1.OE.59.9.092009. - DOI
-
- Datskos P.G., Morales-Rodriguez M., Senesac L.R. Standoff imaging of trace RDX using quantum cascade lasers. IEEE Sensor. J. 2020;20(1):149–154. doi: 10.1109/JSEN.2019.2940883. - DOI
-
- Gallo E., Cantu L., Duschek F. Remote Raman spectroscopy of explosive precursors. Opt. Eng. 2021;60(8) doi: 10.1117/1.OE.60.8.084108. - DOI
Environmental
-
- Ariyarathna T., Ballentine M., Vlahos P., Smith R., Cooper C., Bojlke J., Groshens T., Tobias C. Degradation of RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) in contrasting coastal marine habitats: subtidal non-vegetated (sand), subtidal vegetated (silt/eel grass), and intertidal marsh. Sci. Total Environ. 2020 doi: 10.1016/j.scitotenv.2020.140800. - DOI - PubMed
-
- Behera R., Biswal T., Panda R. In: Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERA 2020. Acharya S., Mishra D., editors. Springer; 2021. pp. 305–315. - DOI
-
- Boyd T.J., Cuenca R.H., Hagimoto Y., Michalsen M.M., Tobias C., Popovic J. U.S. Naval Research Laboratory; 2021. Stable Carbon Isotopes for Trace in Situ RDX Remediation.https://apps.dtic.mil/sti/citations/AD1122062 (NRL/6180/MR—2021/1)
Other (Safety, Definitions, Etc):
-
- Abraham M.H., Acree W.E., Liu X. Descriptors for high-energy nitro compounds: estimation of thermodynamic, physicochemical and environmental properties. Propellants, Explos. Pyrotech. 2021;46(2):267–279. doi: 10.1002/prep.202000117. - DOI
-
- Aduev B., Nurmukhametov D., Liskov I., Zvekov A. RDX-Al and PETN-Al composites' glow spectral kinetics at the explosion initiated with laser pulse. Combust. Flame. 2021;223:376–381. doi: 10.1016/j.combustflame.2020.10.016. - DOI
-
- Aduev B.P., Nurmukhametov D.R., Liskov I.Y., Tupitsyn A.V., Belokurov G.M. Laser pulse initiation of RDX-al and PETN-Al composites explosion. Combust. Flame. 2020;216:468–471. doi: 10.1016/j.combustflame.2019.10.037. - DOI
-
- Ageev M.V., Vedernikov Y.N., Zegrya G.G., Mazur A.S., Poberezhnaya U.M., Popov V.K., Savenkov G.G. Properties of two and three-component explosive compositions based on porous silicon. Russ. J. Phys. Chem. B. 2021;15(2):259–265. doi: 10.1134/S1990793121020020. - DOI
Final Notes (Patents etc)
-
- Afilani, T. (2020). Dynamic selective polarization matching for remote detection smokeless gunpowder (U.S. Patent 2020191747A1). U.S. Patent and Trademark Office. https://patents.google.com/patent/US20200191747A1/en.
-
- Alexander, T.B. & Price, D.W. (2020). High energy reduced sensitivity tactical explosives (U.S. Patent No. 20200062671A1). U.S. Patent and Trademark Office. https://patents.google.com/patent/US20200062671A1/en..
-
- Apblett, A.W., Materer, N.F., & Shaikh, S. (2019). Explosive-containing porous materials as non-detonable training aid (U.S. Patent No. 2,019,018,687,8A1). Washington, DC: U.S. Patent and Trademark Office. https://patents.google.com/patent/US20190186878A1/en.
-
- Bell, W.T. & Rairigh, J.G. (2020). Mini-severing and back-off tool with pressure balanced explosives (U.S. Patent No. 10,538,984 B2). U.S. Patent and Trademark Office. https://www.lens.org/images/patent/US/10538984/B2/US_10538984_B2.pdf.
-
- Blaha, J., Dupac, J., Zastera, M., & Mazl, R. (2020). Explosives detector and method for detecting explosives (U.S. Patent No. 10551304B2). U.S. Patent and Trademark Office. https://patents.google.com/patent/US10551304B2/en.
Publication types
LinkOut - more resources
Full Text Sources