Commentary on Unnecessary reliance on multilevel modelling to analyse nested data in neuroscience: When a traditional summary-statistics approach suffices
- PMID: 36685767
- PMCID: PMC9846465
- DOI: 10.1016/j.crneur.2022.100041
Commentary on Unnecessary reliance on multilevel modelling to analyse nested data in neuroscience: When a traditional summary-statistics approach suffices
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
Unnecessary reliance on multilevel modelling to analyse nested data in neuroscience: When a traditional summary-statistics approach suffices.Curr Res Neurobiol. 2021 Nov 17;2:100024. doi: 10.1016/j.crneur.2021.100024. eCollection 2021. Curr Res Neurobiol. 2021. PMID: 36246511 Free PMC article.
-
Multilevel modelling: Beyond the basic applications.Br J Math Stat Psychol. 2009 May;62(Pt 2):439-56. doi: 10.1348/000711008X327632. Epub 2008 Jul 28. Br J Math Stat Psychol. 2009. PMID: 18664317
-
Estimating Multilevel Models on Data Streams.Psychometrika. 2019 Mar;84(1):41-64. doi: 10.1007/s11336-018-09656-z. Epub 2019 Jan 22. Psychometrika. 2019. PMID: 30671789 Free PMC article.
-
Comparing methods of analysing datasets with small clusters: case studies using four paediatric datasets.Paediatr Perinat Epidemiol. 2009 Jul;23(4):380-92. doi: 10.1111/j.1365-3016.2009.01046.x. Paediatr Perinat Epidemiol. 2009. PMID: 19523085 Review.
-
Multilevel models for hierarchically nested data: potential applications in substance abuse prevention research.NIDA Res Monogr. 1994;142:140-83. NIDA Res Monogr. 1994. PMID: 9243536 Review.
References
-
- Baayen R.H., Davidson D.J., Bates D.M. Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 2008;59(4):390–412. doi: 10.1016/j.jml.2007.12.005. - DOI
-
- Bates D., Bolker M.M., B . 2011. lme4: Linear Mixed-Effects Models Using S4 Classes (0.999375-39)http://www.idg.pl/mirrors/CRAN/web/packages/lme4/ [Computer software]
-
- Bürkner P.-C. 2017. Brms: Bayesian Regression Models Using Stan (1.6.1)https://cran.r-project.org/web/packages/brms/index.html [Computer software]
Publication types
LinkOut - more resources
Full Text Sources