CM-FRAP-Continuum Mechanics-Based Fluorescence Recovery After Photobleaching
- PMID: 36689324
- DOI: 10.1002/cpz1.655
CM-FRAP-Continuum Mechanics-Based Fluorescence Recovery After Photobleaching
Abstract
Fluorescence recovery after photobleaching (FRAP) is widely used to evaluate intracellular molecular turnover or repeated translocation of molecules using confocal laser scanning microscopy. While numerous models have been developed for the analysis of FRAP responses, in which chemical interactions and/or fast diffusion processes are involved, it is inherently difficult to evaluate the long-term behavior of molecular turnover because of the presence of intracellular flow and microscopic deformation of bleached regions. To overcome these difficulties, we have developed a novel continuum mechanics-based FRAP (CM-FRAP) approach that enables simultaneous evaluation of long-term molecular turnover and intracellular flow/deformation. Here we demonstrate the utility of CM-FRAP by using actin molecules associated with stress fibers in rat aortic smooth muscle cells with clarification of the experimental setup and data analysis. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Plasmid construction and sample preparation Basic Protocol 2: How to perform FRAP experiments Basic Protocol 3: Data analysis based on CM-FRAP.
Keywords: biomechanics; confocal laser scanning microscopy; continuum mechanics; cytoskeleton; fluorescence recovery after photobleaching.
© 2023 Wiley Periodicals LLC.
Similar articles
-
Long-Term Fluorescence Recovery After Photobleaching (FRAP).Methods Mol Biol. 2023;2600:311-322. doi: 10.1007/978-1-0716-2851-5_21. Methods Mol Biol. 2023. PMID: 36587107
-
Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP.Biophys J. 2022 Aug 2;121(15):2921-2930. doi: 10.1016/j.bpj.2022.06.032. Epub 2022 Jun 30. Biophys J. 2022. PMID: 35778840 Free PMC article.
-
A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes.Biophys J. 2009 Sep 2;97(5):1501-11. doi: 10.1016/j.bpj.2009.06.017. Biophys J. 2009. PMID: 19720039 Free PMC article.
-
Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application.ACS Biomater Sci Eng. 2022 Mar 14;8(3):1028-1048. doi: 10.1021/acsbiomaterials.1c01422. Epub 2022 Feb 24. ACS Biomater Sci Eng. 2022. PMID: 35201752 Review.
-
The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane.Membranes (Basel). 2023 May 2;13(5):492. doi: 10.3390/membranes13050492. Membranes (Basel). 2023. PMID: 37233553 Free PMC article. Review.
References
Literature Cited
References
-
- Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., & Webb, W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophysical Journal, 16, 1055-1069. doi: 10.1016/S0006-3495(76)85755-4
-
- Berk, D. A., Yuan, F., Leunig, M., & Jain, R. K. (1993). Fluorescence photobleaching with spatial Fourier analysis: Measurement of diffusion in light-scattering media. Biophysical Journal, 65, 2428-2436. doi: 10.1016/S0006-3495(93)81326-2
-
- Campbell, J. J., & Knight, M. M. (2007). An improved confocal FRAP technique for the measurement of long-term actin dynamics in individual stress fibers. Microscopy Research and Technique, 70, 1034-1040. doi: 10.1002/jemt.20513
-
- Carnell, M., Macmillan, A., & Whan, R. (2015). Fluorescence recovery after photobleaching (FRAP): Acquisition, analysis, and applications. Methods in Molecular Biology, 1232, 255-271. doi: 10.1007/978-1-4939-1752-5_18
-
- Daddysman, M. K., & Fecko, C. J. (2013). Revisiting point FRAP to quantitatively characterize anomalous diffusion in live cells. Journal of Physical Chemistry B, 117, 1241-1251. doi: 10.1021/jp310348s
Internet Resources
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous