A DNA barcode reference library for the native woody seed plants of Japan
- PMID: 36694075
- DOI: 10.1111/1755-0998.13748
A DNA barcode reference library for the native woody seed plants of Japan
Abstract
DNA barcode databases are increasingly available for a range of organisms, facilitating the wide application of DNA barcode-based studies. Here we announce the development of a comprehensive DNA barcode reference library of Japanese native woody seed plants representing 43 orders, 99 families, 303 genera and 834 species, and comprising 77.3% of the genera and 72.2% of the species of native woody seed plants in Japan. A total of 6216 plant specimens were collected from 223 sites across the subtropical, temperate, boreal and alpine biomes in Japan with most species represented by multiple accessions. This reference library utilized three chloroplast DNA regions (rbcL, trnH-psbA and matK) and consists of 14,403 barcode sequences. Individual regions varied in their identification rates, with species-level and genus-level rates for rbcL, trnH-psbA and matK based on blast being 57.4%/96.2%, 78.5%/99.1% and 67.8%/98.1%, respectively. Identification rates were higher using region combinations, with total species-level rates for two region combinations (rbcL & trnH-psbA, rbcL & matK and trnH-psbA & matK) ranging between 90.6% and 95.8%, and for all three regions being equal to 98.6%. Genus-level identification rates were even higher, ranging between 99.7% and 100% for two region combinations and being 100% for the three regions. These results indicate that this DNA barcode reference library is an effective resource for investigations of native woody seed plants in Japan using DNA barcodes and provides a useful template for the development of libraries for other components of the Japanese flora.
Keywords: DNA barcoding; Japan; conifers; species discrimination; vascular plants; woody flora.
© 2023 John Wiley & Sons Ltd.
Similar articles
-
Identification of species in the angiosperm family Apiaceae using DNA barcodes.Mol Ecol Resour. 2014 Nov;14(6):1231-8. doi: 10.1111/1755-0998.12262. Epub 2014 May 14. Mol Ecol Resour. 2014. PMID: 24739357
-
[Identification of plant species based on DNA barcode technology].Ying Yong Sheng Tai Xue Bao. 2012 May;23(5):1240-6. Ying Yong Sheng Tai Xue Bao. 2012. PMID: 22919833 Chinese.
-
DNA Barcoding of Invasive Terrestrial Plant Species in India.Mol Biotechnol. 2025 Mar;67(3):1027-1034. doi: 10.1007/s12033-024-01102-z. Epub 2024 Mar 2. Mol Biotechnol. 2025. PMID: 38430432
-
Plant DNA barcode library for native flowering plants in the arid region of northwestern China.Mol Ecol Resour. 2023 Aug;23(6):1389-1402. doi: 10.1111/1755-0998.13797. Epub 2023 Apr 23. Mol Ecol Resour. 2023. PMID: 37021680
-
DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market.Plant Biotechnol J. 2016 Jan;14(1):8-21. doi: 10.1111/pbi.12419. Epub 2015 Jun 16. Plant Biotechnol J. 2016. PMID: 26079154 Free PMC article. Review.
Cited by
-
DNA barcoding of terrestrial invasive plant species in Southwest Michigan.Plant Direct. 2024 Jun 18;8(6):e615. doi: 10.1002/pld3.615. eCollection 2024 Jun. Plant Direct. 2024. PMID: 38895104 Free PMC article.
-
Identification of herbal medicine species of Lysimachia L. (Primulaceae) in Southern China using genome skimming.BMC Plant Biol. 2025 Jul 24;25(1):953. doi: 10.1186/s12870-025-06948-2. BMC Plant Biol. 2025. PMID: 40702435 Free PMC article.
-
Chloroplast genome-based genetic resources via genome skimming for the subalpine forests of Japan and adjacent regions.Ecol Evol. 2024 Jul 17;14(7):e11584. doi: 10.1002/ece3.11584. eCollection 2024 Jul. Ecol Evol. 2024. PMID: 39026955 Free PMC article.
-
Is There a Key Primer for Amplification of Core Land Plant DNA Barcode Regions (rbcL and matK)?Ecol Evol. 2025 Feb 16;15(2):e70961. doi: 10.1002/ece3.70961. eCollection 2025 Feb. Ecol Evol. 2025. PMID: 39963510 Free PMC article.
-
Molecular Structure and Variation Characteristics of the Plastomes from Six Malus baccata (L.) Borkh. Individuals and Comparative Genomic Analysis with Other Malus Species.Biomolecules. 2023 Jun 8;13(6):962. doi: 10.3390/biom13060962. Biomolecules. 2023. PMID: 37371542 Free PMC article.
References
REFERENCES
-
- Abadi, S., Azouri, D., Pupko, T., & Mayrose, I. (2019). Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications, 10(1), 934.
-
- Aizawa, M., & Iwaizumi, M. G. (2020). Natural hybridization and introgression of Abies firma and Abies homolepis along the altitudinal gradient and genetic insights into the origin of Abies umbellata. Plant Species Biology, 35(2), 147-157.
-
- Alsos, I. G., Lammers, Y., Yoccoz, N. G., Jørgensen, T., Sjögren, P., Gielly, L., & Edwards, M. E. (2018). Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS One, 13(4), e0195403.
-
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.
-
- Amandita, F. Y., Rembold, K., Vornam, B., Rahayu, S., Siregar, I. Z., Kreft, H., & Finkeldey, R. (2019). DNA barcoding of flowering plants in Sumatra, Indonesia. Ecology and Evolution, 9(4), 1858-1868.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous