Quantitative Regulation of Interlayer Space of NH4 V4 O10 for Fast and Durable Zn2+ and NH4 + Storage
- PMID: 36698299
- PMCID: PMC10037961
- DOI: 10.1002/advs.202206836
Quantitative Regulation of Interlayer Space of NH4 V4 O10 for Fast and Durable Zn2+ and NH4 + Storage
Abstract
Layered vanadium-based oxides are the promising cathode materials for aqueous zinc-ion batteries (AZIBs). Herein, an in situ electrochemical strategy that can effectively regulate the interlayer distance of layered NH4 V4 O10 quantitatively is proposed and a close relationship between the optimal performances with interlayer space is revealed. Specifically, via increasing the cutoff voltage from 1.4, 1.6 to 1.8 V, the interlayer space of NH4 V4 O10 can be well-controlled and enlarged to 10.21, 11.86, and 12.08 Å, respectively, much larger than the pristine one (9.5 Å). Among them, the cathode being charging to 1.6 V (NH4 V4 O10 -C1.6), demonstrates the best Zn2+ storage performances including high capacity of 223 mA h g-1 at 10 A g-1 and long-term stability with capacity retention of 97.5% over 1000 cycles. Such superior performances can be attributed to a good balance among active redox sites, charge transfer kinetics, and crystal structure stability, enabled by careful control of the interlayer space. Moreover, NH4 V4 O10 -C1.6 delivers NH4 + storage performances whose capacity reaches 296 mA h g-1 at 0.1 A g-1 and lifespan lasts over 3000 cycles at 5 A g-1 . This study provides new insights into understand the limitation of interlayer space for ion storage in aqueous media and guides exploration of high-performance cathode materials.
Keywords: ammonium vanadate; aqueous ammonium-ion batteries; aqueous zinc-ion batteries; interlayer space; layered structure.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
"Dual- Engineering" Strategy to Regulate NH4 V4 O10 as Cathodes for High-Performance Aqueous Zinc Ion Batteries.Small. 2023 Sep;19(39):e2301870. doi: 10.1002/smll.202301870. Epub 2023 May 26. Small. 2023. PMID: 37236170
-
Carbon Nitride Pillared Vanadate Via Chemical Pre-Intercalation Towards High-Performance Aqueous Zinc-Ion Batteries.Angew Chem Int Ed Engl. 2023 Jun 26;62(26):e202303529. doi: 10.1002/anie.202303529. Epub 2023 May 17. Angew Chem Int Ed Engl. 2023. PMID: 37132610
-
Oxygen Vacancies on NH4 V4 O10 Accelerate Ion and Charge Transfer in Aqueous Zinc-Ion Batteries.Small. 2024 Mar;20(11):e2306972. doi: 10.1002/smll.202306972. Epub 2023 Dec 24. Small. 2024. PMID: 38143291
-
A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries.Chem Asian J. 2022 Apr 1;17(7):e202200067. doi: 10.1002/asia.202200067. Epub 2022 Mar 3. Chem Asian J. 2022. PMID: 35188329 Review.
-
Ammonium Ion Batteries: Material, Electrochemistry and Strategy.Angew Chem Int Ed Engl. 2023 Jun 5;62(23):e202301629. doi: 10.1002/anie.202301629. Epub 2023 Mar 24. Angew Chem Int Ed Engl. 2023. PMID: 36883590 Review.
Cited by
-
High-Performance Wide-Temperature Zinc-Ion Batteries with K+/C3N4 Co-Intercalated Ammonium Vanadate Cathodes.Nanomicro Lett. 2025 Sep 1;18(1):48. doi: 10.1007/s40820-025-01892-0. Nanomicro Lett. 2025. PMID: 40888862 Free PMC article.
-
Interlayer engineering-induced charge redistribution in Bi2Te3 toward efficient Zn2+ and NH4 + storage.Chem Sci. 2025 Apr 5;16(19):8523-8531. doi: 10.1039/d5sc01210d. eCollection 2025 May 14. Chem Sci. 2025. PMID: 40242849 Free PMC article.
References
-
- Song M., Tan H., Chao D., Fan H. J., Adv. Funct. Mater. 2018, 28, 1802564.
-
- Zhang T., Mao Z., Shi X., Jin J., He B., Wang R., Gong Y., Wang H., Energy Environ. Sci. 2022, 15, 158.
-
- Fei R., Wang H., Wang Q., Qiu R., Tang S., Wang R., He B., Gong Y., Fan H. J., Adv. Energy Mater. 2020, 10, 2002741.
-
- Wang X., Xi B., Feng Z., Chen W., Li H., Jia Y., Feng J., Qian Y., Xiong S., J. Mater. Chem. A 2019, 7, 19130.
-
- Jiang H., Zhang Y., Xu L., Gao Z., Zheng J., Wang Q., Meng C., Wang J., Chem. Eng. J. 2020, 382, 122844.
Grants and funding
LinkOut - more resources
Full Text Sources