Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;34(2):152-67.
doi: 10.1016/0026-2862(87)90050-1.

Flow dynamics of human sickle erythrocytes in the mesenteric microcirculation of the exchange-transfused rat

Affiliations

Flow dynamics of human sickle erythrocytes in the mesenteric microcirculation of the exchange-transfused rat

J Kurantsin-Mills et al. Microvasc Res. 1987 Sep.

Abstract

To analyze the microvascular rheology of sickle cells in an intact animal model, rats were isovolemically exchange transfused with human normal (hemoglobin AA) or sickle (hemoglobin SS) erythrocytes (blood group O) or autologous red cells under ambient conditions, and the effects of the heterologous or autologous cells on (a) hemodynamics and respiration, (b) blood gases, and (c) acid-base status of the recipients were determined. Exchange transfusion of rats with autologous red cells or hemoglobin AA or hemoglobin SS erythrocytes was associated with stable mean arterial blood pressure, central venous pressure, respiration rate, blood pH, pCO2, and pO2 during the experimental period, except for tachycardia among the group of rats that received HbSS cells. Arteriovenous oxygen content varied among the three groups of animals, but, nonetheless, suggested adequate tissue oxygen supply under the conditions of the study. Acid-base status also was similar in the three groups of rats. The exchange-transfused rats were utilized to investigate the flow dynamics of red cells in the mesenteric microcirculation by applying intravital microscopy. Time-averaged velocities of the autologous red cells in 16- to 30-microns (id) vessels ranged from 1.07 to 1.25 mm/sec in single unbranched arterioles with varying flux and wall shear rates. Time-averaged velocities of the HbAA cells in single 15- to 35-microns arterioles ranged from 1.16 to 1.24 mm/sec with wall shear rates similar to the estimates for the autologous cells. For both rat and human HbAA RBCs, the flow dynamics were indicative of normal shear-dependent and deformability characteristics of the cells under the flow conditions. Sickle cells exhibited time-averaged velocities of 0.384 to 0.452 mm/sec, lower wall shear rates in 10- to 35-microns single unbranched arterioles, and three times less volumetric flux. In some arterioles, sickle cells with high axial ratio and low deformability showed definite adhesion to the endothelial surface, residing at such sites for several seconds until dislodged by the force of flow. Within single unbranched vessels or at microvascular bifurcations, sickle elliptocytes and sickle echinocytes with low deformability and high axial ratio obstructed flow and exhibited residence times of 2 to 88 sec, thereby causing stasis. These data illustrate the microvascular flow behavior of sickle cells and demonstrate the rheological disequilibrium state that can result as sickle cells course through successive segments of the microcirculation.

PubMed Disclaimer

Publication types

LinkOut - more resources