Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Apr;119(4):550-559.
doi: 10.1016/j.fertnstert.2023.01.027. Epub 2023 Jan 23.

Future potential of in vitro maturation including fertility preservation

Affiliations
Free article
Review

Future potential of in vitro maturation including fertility preservation

Jesús Cadenas et al. Fertil Steril. 2023 Apr.
Free article

Abstract

In several mammalian species, oocytes from small antral follicles after in vitro maturation (IVM) are successfully used for procreation. Humans are the exception, mainly because of limited access to immature oocytes and because oocyte maturation is uniquely regulated in women. With the introduction of cryopreservation of the ovarian cortex for fertility preservation, immature oocytes from small antral follicles in the medulla are now available for developing IVM on the basis of actual human studies. This review presents recent findings in favor of developing human IVM, including the oocyte diameter, follicle size from which the immature oocytes are collected, necessary level of follicle-stimulating hormone and luteinizing hormone to accelerate IVM, and secretion of factors from the cumulus-oocyte complex that affect the way oocyte maturation takes place. Furthermore, on the basis of studies in human granulosa cells and follicle fluid collected during the final maturation of follicles in vivo, a number of signal transduction pathways and hormone levels active during physiological conditions have been identified, providing new candidates and ways to improve the current IVM platform. Furthermore, it is suggested that the small droplet of culture medium in which IVM is performed mimics the hormonal milieu within a follicle created by the somatic cells and oocyte in vivo and may be used to advance oocyte nuclear and cytoplasmic maturation. Collectively, we envision that a continued research effort will develop a human IVM platform equally effective as for other mammalian species.

Keywords: Human oocyte maturation; IVM; fertility preservation; recreating follicle environment in vitro; small antral follicles.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources