Epileptic seizure focus detection from interictal electroencephalogram: a survey
- PMID: 36704629
- PMCID: PMC9871145
- DOI: 10.1007/s11571-022-09816-z
Epileptic seizure focus detection from interictal electroencephalogram: a survey
Abstract
Electroencephalogram (EEG) is one of most effective clinical diagnosis modalities for the localization of epileptic focus. Most current AI solutions use this modality to analyze the EEG signals in an automated manner to identify the epileptic seizure focus. To develop AI system for identifying the epileptic focus, there are many recently-published AI solutions based on biomarkers or statistic features that utilize interictal EEGs. In this review, we survey these solutions and find that they can be divided into three main categories: (i) those that use of biomarkers in EEG signals, including high-frequency oscillation, phase-amplitude coupling, and interictal epileptiform discharges, (ii) others that utilize feature-extraction methods, and (iii) solutions based upon neural networks (an end-to-end approach). We provide a detailed description of seizure focus with clinical diagnosis methods, a summary of the public datasets that seek to reduce the research gap in epilepsy, recent novel performance evaluation criteria used to evaluate the AI systems, and guidelines on when and how to use them. This review also suggests a number of future research challenges that must be overcome in order to design more efficient computer-aided solutions to epilepsy focus detection.
Keywords: Epilepsy; High-frequency oscillation (HFOs); Interictal electroencephalogram (EEG); Interictal epileptiform discharges (IEDs); Neural network; Phase amplitude coupling (PAC); Ripple and fast ripple; Seizure focus.
© The Author(s) 2022.
Figures








Similar articles
-
Improving automated diagnosis of epilepsy from EEGs beyond IEDs.J Neural Eng. 2022 Nov 24;19(6):10.1088/1741-2552/ac9c93. doi: 10.1088/1741-2552/ac9c93. J Neural Eng. 2022. PMID: 36270485 Free PMC article.
-
Automated Adult Epilepsy Diagnostic Tool Based on Interictal Scalp Electroencephalogram Characteristics: A Six-Center Study.Int J Neural Syst. 2021 May;31(5):2050074. doi: 10.1142/S0129065720500744. Epub 2021 Jan 12. Int J Neural Syst. 2021. PMID: 33438530 Free PMC article.
-
Association of Interictal Epileptiform Discharges with Sleep and Anti-Epileptic Drugs.Ann Neurosci. 2016 Oct;23(4):230-234. doi: 10.1159/000449483. Epub 2016 Oct 4. Ann Neurosci. 2016. PMID: 27780990 Free PMC article.
-
How to establish causality in epilepsy surgery.Brain Dev. 2013 Sep;35(8):706-20. doi: 10.1016/j.braindev.2013.04.004. Epub 2013 May 15. Brain Dev. 2013. PMID: 23684007 Free PMC article. Review.
-
EEG biomarker candidates for the identification of epilepsy.Clin Neurophysiol Pract. 2022 Dec 14;8:32-41. doi: 10.1016/j.cnp.2022.11.004. eCollection 2023. Clin Neurophysiol Pract. 2022. PMID: 36632368 Free PMC article. Review.
Cited by
-
A Review of EEG-based Localization of Epileptic Seizure Foci: Common Points with Multimodal Fusion of Brain Data.J Med Signals Sens. 2024 Jul 25;14:19. doi: 10.4103/jmss.jmss_11_24. eCollection 2024. J Med Signals Sens. 2024. PMID: 39234592 Free PMC article. Review.
-
Identification of TLE Focus from EEG Signals by Using Deep Learning Approach.Diagnostics (Basel). 2023 Jul 4;13(13):2261. doi: 10.3390/diagnostics13132261. Diagnostics (Basel). 2023. PMID: 37443655 Free PMC article.
-
TATPat based explainable EEG model for neonatal seizure detection.Sci Rep. 2024 Nov 4;14(1):26688. doi: 10.1038/s41598-024-77609-x. Sci Rep. 2024. PMID: 39496779 Free PMC article.
-
Cross-patient seizure prediction via continuous domain adaptation and similar sample replay.Cogn Neurodyn. 2025 Dec;19(1):26. doi: 10.1007/s11571-024-10216-8. Epub 2025 Jan 15. Cogn Neurodyn. 2025. PMID: 39830598
-
Machine learning on interictal intracranial EEG predicts surgical outcome in drug resistant epilepsy.NPJ Digit Med. 2025 Mar 5;8(1):138. doi: 10.1038/s41746-025-01531-3. NPJ Digit Med. 2025. PMID: 40038415 Free PMC article.
References
-
- Abd El-Samie FE, Alotaiby TN, Khalid MI, Alshebeili SA, Aldosari SA. A review of EEG and MEG epileptic spike detection algorithms. IEEE Access. 2018;6:60673–60688. doi: 10.1109/ACCESS.2018.2875487. - DOI
-
- Acharya UR, Hagiwara Y, Deshpande SN, Suren S, Koh JEW, Oh SL, Arunkumar N, Ciaccio EJ, Lim CM. Characterization of focal EEG signals: a review. Future Gener Comput Syst. 2019;91:290–299. doi: 10.1016/j.future.2018.08.044. - DOI
-
- Adjouadi M, Cabrerizo M, Ayala M, Sanchez D, Yaylali I, Jayakar P, Barreto A. A new mathematical approach based on orthogonal operators for the detection of interictal spikes in epileptogenic data. Biomed Sci Instrum. 2004;40:175–180. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous