Automated 3D Design and Evaluation of RNA Nanostructures with RNAMake
- PMID: 36705909
- DOI: 10.1007/978-1-0716-2768-6_15
Automated 3D Design and Evaluation of RNA Nanostructures with RNAMake
Abstract
Despite growing interest in applying RNA's unique structural characteristics to solve diverse biotechnology and nanotechnology problems, there are few computational tools for targeted tertiary design. As a result, RNA 3D design is traditionally slow, resource-consuming, and dependent on expert modeling. In this chapter, we discuss our recently developed software package: RNAMake, a set of applications capable of designing RNA tertiary structures to solve various relevant nanotechnology problems and provide basic thermodynamic calculations for the generated designs. We provide in-depth examples and instructions for designing example RNA nanostructures such as minimal RNA sequences containing a single tertiary contact, generating RNAs that stabilize small-molecule ligands, and building tethers that link ribosomal subunits together. We also highlight the addition of a new Monte Carlo design algorithm and the ability to estimate the thermodynamic contribution of helical elements in RNA 3D structures.
Keywords: Computer-guided design; RNA design; RNA tertiary structure.
© 2023. Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.J Mol Graph Model. 2008 Oct;27(3):299-308. doi: 10.1016/j.jmgm.2008.05.004. Epub 2008 May 24. J Mol Graph Model. 2008. PMID: 18838281 Free PMC article.
-
Computational design of three-dimensional RNA structure and function.Nat Nanotechnol. 2019 Sep;14(9):866-873. doi: 10.1038/s41565-019-0517-8. Epub 2019 Aug 19. Nat Nanotechnol. 2019. PMID: 31427748 Free PMC article.
-
Computer-Aided Design of RNA Origami Structures.Methods Mol Biol. 2017;1500:51-80. doi: 10.1007/978-1-4939-6454-3_5. Methods Mol Biol. 2017. PMID: 27813001
-
Computational Approaches to Nucleic Acid Origami.ACS Comb Sci. 2015 Oct 12;17(10):535-47. doi: 10.1021/acscombsci.5b00079. Epub 2015 Sep 17. ACS Comb Sci. 2015. PMID: 26348196 Review.
-
Design and simulation of DNA, RNA and hybrid protein-nucleic acid nanostructures with oxView.Nat Protoc. 2022 Aug;17(8):1762-1788. doi: 10.1038/s41596-022-00688-5. Epub 2022 Jun 6. Nat Protoc. 2022. PMID: 35668321 Review.
References
-
- Jasinski D, Haque F, Binzel DW, Guo P (2017) Advancement of the emerging field of RNA nanotechnology. ACS Nano 11:1142–1164. https://doi.org/10.1021/acsnano.6b05737 - DOI - PubMed - PMC
-
- Leontis NB, Westhof E (2002) The annotation of RNA motifs. Comp Funct Genomics 3:518–524. https://doi.org/10.1002/cfg.213 - DOI - PubMed - PMC
-
- Petrov AI, Zirbel CL, Leontis NB (2013) Automated classification of RNA 3D motifs and the RNA 3D motif atlas. RNA 19:1327–1340. https://doi.org/10.1261/rna.039438.113 - DOI - PubMed - PMC
-
- Parlea LG, Sweeney BA, Hosseini-Asanjan M, Zirbel CL, Leontis NB (2016) The RNA 3D motif atlas: computational methods for extraction, organization and evaluation of RNA motifs. Methods 103:99–119. https://doi.org/10.1016/j.ymeth.2016.04.025 - DOI - PubMed - PMC
-
- Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB (2008) FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol 56:215–252. https://doi.org/10.1007/s00285-007-0110-x - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials