Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer
- PMID: 36706177
- PMCID: PMC9882987
- DOI: 10.1126/sciadv.ade1444
Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer
Abstract
Systemic messenger RNA (mRNA) delivery to organs outside the liver, spleen, and lungs remains challenging. To overcome this issue, we hypothesized that altering nanoparticle chemistry and administration routes may enable mRNA-induced protein expression outside of the reticuloendothelial system. Here, we describe a strategy for delivering mRNA potently and specifically to the pancreas using lipid nanoparticles. Our results show that delivering lipid nanoparticles containing cationic helper lipids by intraperitoneal administration produces robust and specific protein expression in the pancreas. Most resultant protein expression occurred within insulin-producing β cells. Last, we found that pancreatic mRNA delivery was dependent on horizontal gene transfer by peritoneal macrophage exosome secretion, an underappreciated mechanism that influences the delivery of mRNA lipid nanoparticles. We anticipate that this strategy will enable gene therapies for intractable pancreatic diseases such as diabetes and cancer.
Figures








Similar articles
-
The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs.J Control Release. 2022 May;345:819-831. doi: 10.1016/j.jconrel.2022.03.046. Epub 2022 Mar 26. J Control Release. 2022. PMID: 35346768 Free PMC article.
-
Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.Acc Chem Res. 2021 Dec 7;54(23):4283-4293. doi: 10.1021/acs.accounts.1c00550. Epub 2021 Nov 18. Acc Chem Res. 2021. PMID: 34793124 Free PMC article.
-
Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.J Control Release. 2019 Dec 28;316:404-417. doi: 10.1016/j.jconrel.2019.10.028. Epub 2019 Oct 31. J Control Release. 2019. PMID: 31678653 Free PMC article.
-
Chemistry of Lipid Nanoparticles for RNA Delivery.Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1. Acc Chem Res. 2022. PMID: 34850635 Review.
-
Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.Acc Chem Res. 2019 Sep 17;52(9):2435-2444. doi: 10.1021/acs.accounts.9b00368. Epub 2019 Aug 9. Acc Chem Res. 2019. PMID: 31397996 Review.
Cited by
-
Biomimetic noncationic lipid nanoparticles for mRNA delivery.Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2311276120. doi: 10.1073/pnas.2311276120. Epub 2023 Dec 11. Proc Natl Acad Sci U S A. 2023. PMID: 38079547 Free PMC article.
-
Messenger RNA-Based Therapeutics and Vaccines: What's beyond COVID-19?ACS Pharmacol Transl Sci. 2023 Jul 3;6(7):943-969. doi: 10.1021/acsptsci.3c00047. eCollection 2023 Jul 14. ACS Pharmacol Transl Sci. 2023. PMID: 37470024 Free PMC article. Review.
-
Nanostructured lipid carriers based mRNA vaccine leads to a T cell-inflamed tumour microenvironment favourable for improving PD-1/PD-L1 blocking therapy and long-term immunity in a cold tumour model.EBioMedicine. 2025 Feb;112:105543. doi: 10.1016/j.ebiom.2024.105543. Epub 2025 Jan 9. EBioMedicine. 2025. PMID: 39793480 Free PMC article.
-
Maternal milk cell components are uptaken by infant liver macrophages via extracellular vesicle mediated transport.FASEB J. 2025 Jan 31;39(2):e70340. doi: 10.1096/fj.202402365R. FASEB J. 2025. PMID: 39835705 Free PMC article.
-
Harnessing tissue-derived mitochondria-rich extracellular vesicles (Ti-mitoEVs) to boost mitochondrial biogenesis for regenerative medicine.Sci Adv. 2025 Jul 18;11(29):eadt1318. doi: 10.1126/sciadv.adt1318. Epub 2025 Jul 16. Sci Adv. 2025. PMID: 40668934 Free PMC article.
References
-
- N. Pardi, M. J. Hogan, R. S. Pelc, H. Muramatsu, H. Andersen, C. R. De Maso, K. A. Dowd, L. L. Sutherland, R. M. Scearce, R. Parks, W. Wagner, A. Granados, J. Greenhouse, M. Walker, E. Willis, J.-S. Yu, C. E. McGee, G. D. Sempowski, B. L. Mui, Y. K. Tam, Y.-J. Huang, D. Vanlandingham, V. M. Holmes, H. Balachandran, S. Sahu, M. Lifton, S. Higgs, S. E. Hensley, T. D. Madden, M. J. Hope, K. Karikó, S. Santra, B. S. Graham, M. G. Lewis, T. C. Pierson, B. F. Haynes, D. Weissman, Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017). - PMC - PubMed
-
- M. Brazzoli, D. Magini, A. Bonci, S. Buccato, C. Giovani, R. Kratzer, V. Zurli, S. Mangiavacchi, D. Casini, L. M. Brito, E. De Gregorio, P. W. Mason, J. B. Ulmer, A. J. Geall, S. Bertholet, Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J. Virol. 90, 332–344 (2016). - PMC - PubMed
-
- M. J. Mulligan, K. E. Lyke, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, K. Neuzil, V. Raabe, R. Bailey, K. A. Swanson, P. Li, K. Koury, W. Kalina, D. Cooper, C. Fontes-Garfias, P.-Y. Shi, Ö. Türeci, K. R. Tompkins, E. E. Walsh, R. Frenck, A. R. Falsey, P. R. Dormitzer, W. C. Gruber, U. Şahin, K. U. Jansen, Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020). - PubMed
-
- L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene, R. N. Coler, M. P. M. Cullough, J. D. Chappell, M. R. Denison, L. J. Stevens, A. J. Pruijssers, A. M. Dermott, B. Flach, N. A. Doria-Rose, K. S. Corbett, K. M. Morabito, S. O’Dell, S. D. Schmidt, P. A. Swanson II, M. Padilla, J. R. Mascola, K. M. Neuzil, H. Bennett, W. Sun, E. Peters, M. Makowski, J. Albert, K. Cross, W. Buchanan, R. Pikaart-Tautges, J. E. Ledgerwood, B. S. Graham, J. H. Beigel; mRNA- Study Group , An mRNA vaccine against SARS-CoV-2 — Preliminary report. N. Engl. J. Med. 383, 1920–1931 (2020). - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources