Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket
- PMID: 36706316
- PMCID: PMC10316156
- DOI: 10.1021/acs.jctc.2c01194
Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket
Abstract
Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics from molecular simulations due to limited simulation timescales. Protein dynamics, especially in the ligand binding pocket, often plays an important role in ligand binding. Based on our previously developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we present LiGaMD2 in which a selective boost potential was applied to both the ligand and protein residues in the binding pocket to improve sampling of ligand binding and dissociation. To validate the performance of LiGaMD2, the T4 lysozyme (T4L) mutants with open and closed pockets bound by different ligands were chosen as model systems. LiGaMD2 could efficiently capture repetitive ligand dissociation and binding within microsecond simulations of all T4L systems. The obtained ligand binding kinetic rates and free energies agreed well with available experimental values and previous modeling results. Therefore, LiGaMD2 provides an improved approach to sample opening of closed protein pockets for ligand dissociation and binding, thereby allowing for efficient calculations of ligand binding thermodynamics and kinetics.
Figures




Similar articles
-
Accelerating Molecular Dynamics Simulations for Drug Discovery.Methods Mol Biol. 2024;2714:187-202. doi: 10.1007/978-1-0716-3441-7_11. Methods Mol Biol. 2024. PMID: 37676600
-
Ligand Gaussian accelerated Molecular Dynamics 3 (LiGaMD3): Improved Calculations of Binding Thermodynamics and Kinetics of Both Small Molecules and Flexible Peptides.bioRxiv [Preprint]. 2024 May 8:2024.05.06.592668. doi: 10.1101/2024.05.06.592668. bioRxiv. 2024. Update in: J Chem Theory Comput. 2024 Jul 23;20(14):5829-5841. doi: 10.1021/acs.jctc.4c00502. PMID: 38766067 Free PMC article. Updated. Preprint.
-
Ligand Gaussian Accelerated Molecular Dynamics 3 (LiGaMD3): Improved Calculations of Binding Thermodynamics and Kinetics of Both Small Molecules and Flexible Peptides.J Chem Theory Comput. 2024 Jul 23;20(14):5829-5841. doi: 10.1021/acs.jctc.4c00502. Epub 2024 Jul 13. J Chem Theory Comput. 2024. PMID: 39002136 Free PMC article.
-
Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives.Adv Appl Bioinform Chem. 2022 Jan 6;15:1-19. doi: 10.2147/AABC.S247950. eCollection 2022. Adv Appl Bioinform Chem. 2022. PMID: 35023931 Free PMC article. Review.
-
Understanding the impact of binding free energy and kinetics calculations in modern drug discovery.Expert Opin Drug Discov. 2024 Jun;19(6):671-682. doi: 10.1080/17460441.2024.2349149. Epub 2024 May 9. Expert Opin Drug Discov. 2024. PMID: 38722032 Free PMC article. Review.
Cited by
-
Mechanism of Ligand Binding to Theophylline RNA Aptamer.J Chem Inf Model. 2024 Feb 12;64(3):1017-1029. doi: 10.1021/acs.jcim.3c01454. Epub 2024 Jan 16. J Chem Inf Model. 2024. PMID: 38226603 Free PMC article.
-
Selectivity and Ranking of Tight-Binding JAK-STAT Inhibitors Using Markovian Milestoning with Voronoi Tessellations.J Chem Inf Model. 2023 Apr 24;63(8):2469-2482. doi: 10.1021/acs.jcim.2c01589. Epub 2023 Apr 6. J Chem Inf Model. 2023. PMID: 37023323 Free PMC article.
-
Molecular Dynamics Activation of γ-Secretase for Cleavage of the Notch1 Substrate.ACS Chem Neurosci. 2023 Dec 6;14(23):4216-4226. doi: 10.1021/acschemneuro.3c00594. Epub 2023 Nov 9. ACS Chem Neurosci. 2023. PMID: 37942767 Free PMC article.
-
Running Gaussian-accelerated Molecular Dynamics Simulations in NAMD [Article v1.0].Living J Comput Mol Sci. 2025;6(1):3815. doi: 10.33011/livecoms.6.1.3815. Epub 2025 Jul 12. Living J Comput Mol Sci. 2025. PMID: 40843106 Free PMC article.
-
Residence time in drug discovery: current insights and future perspectives.Pharmacol Rep. 2025 Aug;77(4):851-873. doi: 10.1007/s43440-025-00748-z. Epub 2025 Jun 9. Pharmacol Rep. 2025. PMID: 40489055 Free PMC article. Review.
References
-
- Hauser AS; Attwood MM; Rask-Andersen M; Schiöth HB; Gloriam DE, Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery 2017, 16 (12), 829–842; - PMC - PubMed
- Miura K, An overview of current methods to confirm protein-protein interactions. Protein and peptide letters 2018, 25 (8), 728–733; - PMC - PubMed
- Renaud J-P; Chari A; Ciferri C; Liu W.-t.; Rémigy H-W; Stark H; Wiesmann C, Cryo-EM in drug discovery: achievements, limitations and prospects. Nature Reviews Drug Discovery 2018, 17 (7), 471–492. - PubMed
-
- Schuetz DA; de Witte WEA; Wong YC; Knasmueller B; Richter L; Kokh DB; Sadiq SK; Bosma R; Nederpelt I; Heitman LH; Segala E; Amaral M; Guo D; Andres D; Georgi V; Stoddart LA; Hill S; Cooke RM; De Graaf C; Leurs R; Frech M; Wade RC; de Lange ECM; IJzerman AP; Muller-Fahrnow A; Ecker GF, Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today 2017, 22 (6), 896–911; - PubMed
- Tonge PJ, Drug-Target Kinetics in Drug Discovery. ACS chemical neuroscience 2018, 9 (1), 29–39; - PMC - PubMed
- Ahmad K; Rizzi A; Capelli R; Mandelli D; Lyu W; Carloni P, Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Frontiers in Molecular Biosciences 2022, 9; - PMC - PubMed
- Ijzerman AP; Guo D, Drug - Target Association Kinetics in Drug Discovery. Trends in Biochemical Sciences 2019, 44 (10), 861–871; - PubMed
- Tonge PJ, Drug–Target Kinetics in Drug Discovery. ACS Chemical Neuroscience 2018, 9 (1), 29–39; - PMC - PubMed
- Ferruz N; De Fabritiis G, Binding Kinetics in Drug Discovery. Molecular Informatics 2016, 35 (6–7), 216–226; - PubMed
- Zhou Y; Fu Y; Yin W; Li J; Wang W; Bai F; Xu S; Gong Q; Peng T; Hong Y; Zhang D; Zhang D; Liu Q; Xu Y; Xu HE; Zhang H; Jiang H; Liu H, Kinetics-Driven Drug Design Strategy for Next-Generation Acetylcholinesterase Inhibitors to Clinical Candidate. Journal of Medicinal Chemistry 2021, 64 (4), 1844–1855. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources