Applications of Artificial Intelligence and Deep Learning in Glaucoma
- PMID: 36706335
- DOI: 10.1097/APO.0000000000000596
Applications of Artificial Intelligence and Deep Learning in Glaucoma
Erratum in
-
Applications of Artificial Intelligence and Deep Learning in Glaucoma: Erratum.Asia Pac J Ophthalmol (Phila). 2023 Jul-Aug 01;12(4):422. doi: 10.1097/APO.0000000000000628. Epub 2023 Jul 31. Asia Pac J Ophthalmol (Phila). 2023. PMID: 37523439 No abstract available.
Abstract
Diagnosis and detection of progression of glaucoma remains challenging. Artificial intelligence-based tools have the potential to improve and standardize the assessment of glaucoma but development of these algorithms is difficult given the multimodal and variable nature of the diagnosis. Currently, most algorithms are focused on a single imaging modality, specifically screening and diagnosis based on fundus photos or optical coherence tomography images. Use of anterior segment optical coherence tomography and goniophotographs is limited. The majority of algorithms designed for disease progression prediction are based on visual fields. No studies in our literature search assessed the use of artificial intelligence for treatment response prediction and no studies conducted prospective testing of their algorithms. Additional challenges to the development of artificial intelligence-based tools include scarcity of data and a lack of consensus in diagnostic criteria. Although research in the use of artificial intelligence for glaucoma is promising, additional work is needed to develop clinically usable tools.
Copyright © 2023 Asia-Pacific Academy of Ophthalmology. Published by Wolters Kluwer Health, Inc. on behalf of the Asia-Pacific Academy of Ophthalmology.
Conflict of interest statement
The authors have no conflicts of interest to disclose.
Similar articles
-
Applications of deep learning in detection of glaucoma: A systematic review.Eur J Ophthalmol. 2021 Jul;31(4):1618-1642. doi: 10.1177/1120672120977346. Epub 2020 Dec 4. Eur J Ophthalmol. 2021. PMID: 33274641
-
[Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis].Vestn Oftalmol. 2024;140(3):82-87. doi: 10.17116/oftalma202414003182. Vestn Oftalmol. 2024. PMID: 38962983 Review. Russian.
-
Artificial intelligence and complex statistical modeling in glaucoma diagnosis and management.Curr Opin Ophthalmol. 2021 Mar 1;32(2):105-117. doi: 10.1097/ICU.0000000000000741. Curr Opin Ophthalmol. 2021. PMID: 33395111 Review.
-
Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice.Transl Vis Sci Technol. 2020 Oct 15;9(2):55. doi: 10.1167/tvst.9.2.55. eCollection 2020 Oct. Transl Vis Sci Technol. 2020. PMID: 33117612 Free PMC article.
-
A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression.Transl Vis Sci Technol. 2020 Jul 22;9(2):42. doi: 10.1167/tvst.9.2.42. eCollection 2020 Jul. Transl Vis Sci Technol. 2020. PMID: 32855846 Free PMC article. Review.
Cited by
-
The applications of anterior segment optical coherence tomography in glaucoma: a 20-year bibliometric analysis.PeerJ. 2024 Nov 28;12:e18611. doi: 10.7717/peerj.18611. eCollection 2024. PeerJ. 2024. PMID: 39619196 Free PMC article. Review.
-
Deep Learning Evaluation of Glaucoma Detection Using Fundus Photographs in Highly Myopic Populations.Biomedicines. 2024 Jun 23;12(7):1394. doi: 10.3390/biomedicines12071394. Biomedicines. 2024. PMID: 39061968 Free PMC article.
-
Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection.Bioengineering (Basel). 2024 Jan 26;11(2):122. doi: 10.3390/bioengineering11020122. Bioengineering (Basel). 2024. PMID: 38391608 Free PMC article. Review.
-
Advancements in high-resolution imaging of the iridocorneal angle.Front Ophthalmol (Lausanne). 2023 Aug 21;3:1229670. doi: 10.3389/fopht.2023.1229670. eCollection 2023. Front Ophthalmol (Lausanne). 2023. PMID: 38983074 Free PMC article. Review.
-
Application and visualization study of an intelligence-assisted classification model for common eye diseases using B-mode ultrasound images.Front Neurosci. 2024 May 14;18:1339075. doi: 10.3389/fnins.2024.1339075. eCollection 2024. Front Neurosci. 2024. PMID: 38808029 Free PMC article.
References
-
- Miller M FDA publishes approved list of AI/ML-enabled medical devices. IQVIA 2022. Accessed July 30. https://www.iqvia.com/locations/united-states/blogs/2021/10/fda-publishe...
-
- US Food and Drug Administration. De novo classification request for IDX-DR. US Food and Drug Administration. 2018. https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180001.pdf
-
- US Food and Drug Administration. EyeArt 510(k) Summary (K200667). US Food and Drug Administration. 2020. Accessed August 21, 2021. https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200667.pdf
-
- Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–2090.
-
- Shaikh Y, Yu F, Coleman AL. Burden of undetected and untreated glaucoma in the United States. Am J Ophthalmol. 2014;158:1121–1129.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical