Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 27;7(1):13.
doi: 10.1038/s41698-023-00354-3.

Germline rare deleterious variant load alters cancer risk, age of onset and tumor characteristics

Affiliations

Germline rare deleterious variant load alters cancer risk, age of onset and tumor characteristics

Myvizhi Esai Selvan et al. NPJ Precis Oncol. .

Abstract

Recent studies show that rare, deleterious variants (RDVs) in certain genes are critical determinants of heritable cancer risk. To more comprehensively understand RDVs, we performed the largest-to-date germline variant calling analysis in a case-control setting for a multi-cancer association study from whole-exome sequencing data of 20,789 participants, split into discovery and validation cohorts. We confirm and extend known associations between cancer risk and germline RDVs in specific gene-sets, including DNA repair (OR = 1.50; p-value = 8.30e-07; 95% CI: 1.28-1.77), cancer predisposition (OR = 1.51; p-value = 4.58e-08; 95% CI: 1.30-1.75), and somatic cancer drivers (OR = 1.46; p-value = 4.04e-06; 95% CI: 1.24-1.72). Furthermore, personal RDV load in these gene-sets associated with increased risk, younger age of onset, increased M1 macrophages in tumor and, increased tumor mutational burden in specific cancers. Our findings can be used towards identifying high-risk individuals, who can then benefit from increased surveillance, earlier screening, and treatments that exploit their tumor characteristics, improving prognosis.

PubMed Disclaimer

Conflict of interest statement

S.G. reports consultancy and/or advisory roles for Merck and OncoMed and research funding from Bristol-Myers Squibb, Genentech, Celgene, Janssen R&D, Takeda, and Regeneron. Other authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Study design.
Flowchart of the study pipeline to identify rare deleterious variants (RDVs) and to perform RDV burden and RDV load analyses.
Fig. 2
Fig. 2. Principal component analyses (PCA) of the study cohort and the gated study cohort.
PCA based on common SNPs (MAF ≥ 0.05) showing the top two principal components of (a) the study cohort together with 1000 Genomes and The Ashkenazi Genome Consortium (TAGC) samples and of (b) the gated samples from the study cohort with European ancestry (6371 cases and 6647 controls).
Fig. 3
Fig. 3. Gene-set level rare, deleterious variant (RDV) burden in the discovery (blue) and validation (red) cohorts.
The whiskers span the 95% confidence interval for OR values (penalized logistic regression). The black circle outline indicates significant burden p ≤ 0.05.
Fig. 4
Fig. 4. Cancer risk based on RDV load.
a Discovery cohort; b Validation cohort. The whiskers span the 95% confidence interval for OR values (penalized logistic regression). The black circle outline indicates significant burden p ≤ 0.05.
Fig. 5
Fig. 5. Comparison of age of diagnosis based on germline RDV load in TCGA cases.
a Cancer predisposition genes b DNA damage repair genes c Somatic cancer driver genes d Fanconi Anemia genes. p-values are calculated based on Mann–Whitney U-test. Boxplot elements: center line indicates median; box limits represent lower (25th percentile) and upper (75th percentile) quartiles; whiskers extend to 1.5 times the interquartile range.
Fig. 6
Fig. 6. Comparison of M1 macrophages cell fraction in tumor based on germline RDV load in TCGA cases.
a Cancer predisposition genes b DNA damage repair genes c Somatic cancer driver genes d Fanconi Anemia genes. The marker in the violin plot indicates mean.

Similar articles

  • Inherited Rare, Deleterious Variants in ATM Increase Lung Adenocarcinoma Risk.
    Esai Selvan M, Zauderer MG, Rudin CM, Jones S, Mukherjee S, Offit K, Onel K, Rennert G, Velculescu VE, Lipkin SM, Klein RJ, Gümüş ZH. Esai Selvan M, et al. J Thorac Oncol. 2020 Dec;15(12):1871-1879. doi: 10.1016/j.jtho.2020.08.017. Epub 2020 Aug 28. J Thorac Oncol. 2020. PMID: 32866655 Free PMC article.
  • Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.
    Waszak SM, Northcott PA, Buchhalter I, Robinson GW, Sutter C, Groebner S, Grund KB, Brugières L, Jones DTW, Pajtler KW, Morrissy AS, Kool M, Sturm D, Chavez L, Ernst A, Brabetz S, Hain M, Zichner T, Segura-Wang M, Weischenfeldt J, Rausch T, Mardin BR, Zhou X, Baciu C, Lawerenz C, Chan JA, Varlet P, Guerrini-Rousseau L, Fults DW, Grajkowska W, Hauser P, Jabado N, Ra YS, Zitterbart K, Shringarpure SS, De La Vega FM, Bustamante CD, Ng HK, Perry A, MacDonald TJ, Hernáiz Driever P, Bendel AE, Bowers DC, McCowage G, Chintagumpala MM, Cohn R, Hassall T, Fleischhack G, Eggen T, Wesenberg F, Feychting M, Lannering B, Schüz J, Johansen C, Andersen TV, Röösli M, Kuehni CE, Grotzer M, Kjaerheim K, Monoranu CM, Archer TC, Duke E, Pomeroy SL, Shelagh R, Frank S, Sumerauer D, Scheurlen W, Ryzhova MV, Milde T, Kratz CP, Samuel D, Zhang J, Solomon DA, Marra M, Eils R, Bartram CR, von Hoff K, Rutkowski S, Ramaswamy V, Gilbertson RJ, Korshunov A, Taylor MD, Lichter P, Malkin D, Gajjar A, Korbel JO, Pfister SM. Waszak SM, et al. Lancet Oncol. 2018 Jun;19(6):785-798. doi: 10.1016/S1470-2045(18)30242-0. Epub 2018 May 9. Lancet Oncol. 2018. PMID: 29753700 Free PMC article.
  • Integrative Analysis of Germline Rare Variants in Clear and Non-Clear Cell Renal Cell Carcinoma.
    Han S, Camp SY, Chu H, Collins R, Gillani R, Park J, Bakouny Z, Ricker CA, Reardon B, Moore N, Kofman E, Labaki C, Braun D, Choueiri TK, AlDubayan SH, Van Allen EM. Han S, et al. medRxiv [Preprint]. 2023 Jan 19:2023.01.18.23284664. doi: 10.1101/2023.01.18.23284664. medRxiv. 2023. Update in: Eur Urol Open Sci. 2024 Mar 08;62:107-122. doi: 10.1016/j.euros.2024.02.006. PMID: 36712083 Free PMC article. Updated. Preprint.
  • Germline and somatic drivers in inherited hematologic malignancies.
    Zoller J, Trajanova D, Feurstein S. Zoller J, et al. Front Oncol. 2023 Oct 13;13:1205855. doi: 10.3389/fonc.2023.1205855. eCollection 2023. Front Oncol. 2023. PMID: 37904876 Free PMC article. Review.
  • DICER1 Tumor Predisposition.
    Schultz KAP, Stewart DR, Kamihara J, Bauer AJ, Merideth MA, Stratton P, Huryn LA, Harris AK, Doros L, Field A, Carr AG, Dehner LP, Messinger Y, Hill DA. Schultz KAP, et al. 2014 Apr 24 [updated 2020 Apr 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2014 Apr 24 [updated 2020 Apr 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 24761742 Free Books & Documents. Review.

Cited by

References

    1. Stadler ZK, et al. Genome-wide association studies of cancer. J. Clin. Oncol. 2010;28:4255–4267. - PMC - PubMed
    1. Li X, et al. The impact of rare variation on gene expression across tissues. Nature. 2017;550:239–243. - PMC - PubMed
    1. Tennessen JA, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–69. - PMC - PubMed
    1. Nelson MR, et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science. 2012;337:100–104. - PMC - PubMed
    1. Robson M, Offit K. Clinical practice. Management of an inherited predisposition to breast cancer. N. Engl. J. Med. 2007;357:154–162. - PubMed

Grants and funding