RootSlice-A novel functional-structural model for root anatomical phenotypes
- PMID: 36708192
- DOI: 10.1111/pce.14552
RootSlice-A novel functional-structural model for root anatomical phenotypes
Erratum in
-
Correction to ''RootSlice: A novel functional-structural model for root anatomical phenotypes''.Plant Cell Environ. 2024 Jul;47(7):2710-2711. doi: 10.1111/pce.14931. Epub 2024 Apr 28. Plant Cell Environ. 2024. PMID: 38679856 No abstract available.
Abstract
Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional-structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole-plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes.
Keywords: OpenSimRoot; cortical cell files; functional-structural modelling; multicellular model; multiscale model integration; phene interactions; rhizoeconomics; root anatomy; root cortical aerenchyma; vacuole size.
© 2023 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Similar articles
-
Cortical parenchyma wall width regulates root metabolic cost and maize performance under suboptimal water availability.J Exp Bot. 2024 Sep 27;75(18):5750-5767. doi: 10.1093/jxb/erae191. J Exp Bot. 2024. PMID: 38661441 Free PMC article.
-
Cortical cell size regulates root metabolic cost.Plant J. 2024 Jun;118(5):1343-1357. doi: 10.1111/tpj.16672. Epub 2024 Feb 10. Plant J. 2024. PMID: 38340035
-
Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture.Plant Cell Environ. 2015 Sep;38(9):1775-84. doi: 10.1111/pce.12451. Epub 2014 Nov 17. Plant Cell Environ. 2015. PMID: 25255708 Review.
-
Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific.J Exp Bot. 2019 Oct 15;70(19):5311-5325. doi: 10.1093/jxb/erz293. J Exp Bot. 2019. PMID: 31231768 Free PMC article.
-
Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems.Ann Bot. 2013 Jul;112(2):347-57. doi: 10.1093/aob/mcs293. Epub 2013 Jan 17. Ann Bot. 2013. PMID: 23328767 Free PMC article. Review.
Cited by
-
Plant microphenotype: from innovative imaging to computational analysis.Plant Biotechnol J. 2024 Apr;22(4):802-818. doi: 10.1111/pbi.14244. Epub 2024 Jan 13. Plant Biotechnol J. 2024. PMID: 38217351 Free PMC article. Review.
-
Large root cortical cells and reduced cortical cell files improve growth under suboptimal nitrogen in silico.Plant Physiol. 2023 Jul 3;192(3):2261-2275. doi: 10.1093/plphys/kiad214. Plant Physiol. 2023. PMID: 37040571 Free PMC article.
-
Evidence that variation in root anatomy contributes to local adaptation in Mexican native maize.Evol Appl. 2024 Mar 10;17(3):e13673. doi: 10.1111/eva.13673. eCollection 2024 Mar. Evol Appl. 2024. PMID: 38468714 Free PMC article.
-
Cortical parenchyma wall width regulates root metabolic cost and maize performance under suboptimal water availability.J Exp Bot. 2024 Sep 27;75(18):5750-5767. doi: 10.1093/jxb/erae191. J Exp Bot. 2024. PMID: 38661441 Free PMC article.
-
Root phenotypes for improved nitrogen capture.Plant Soil. 2024;502(1-2):31-85. doi: 10.1007/s11104-023-06301-2. Epub 2023 Oct 4. Plant Soil. 2024. PMID: 39323575 Free PMC article. Review.
References
REFERENCES
-
- Ahrens, J., Geveci, B. & Law, C. (2005) Paraview: an end-user tool for large data visualization. In: Hansen, C. D. & Johnson, C. R. (Eds.) The Visualization Handbook. Butterworth-Heinemann Burlington, MA, USA, pp. 717-731. https://doi.org/10.1016/B978-012387582-2/50038-1
-
- Ajmera, I. (2016) A systems study of nutrient uptake in plants (Doctoral dissertation, University of Nottingham, UK).
-
- Ajmera, I., Henry, A., Radanielson, A.M., Klein, S.P., Ianevski, A., Bennett, M.J. et al. (2022) Integrated root phenotypes for improved rice performance under low nitrogen availability. Plant, Cell & Environment, 45(3), 805-822.
-
- Alt, S., Ganguly, P. & Salbreux, G. (2017) Vertex models: from cell mechanics to tissue morphogenesis. Philosophical Transactions of the Royal Society, B: Biological Sciences, 372(1720), 20150520.
-
- Anderson, C.T., Carroll, A., Akhmetova, L. & Somerville, C. (2010) Real-time imaging of cellulose reorientation during cell wall expansion in arabidopsis roots. Plant Physiology, 152(2), 787-796.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources