Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers
- PMID: 36719985
- PMCID: PMC9951227
- DOI: 10.1021/acs.chemrev.2c00576
Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers
Abstract
Electromagnetic forces and torques enable many key technologies, including optical tweezers or dielectrophoresis. Interestingly, both techniques rely on the same physical process: the interaction of an oscillating electric field with a particle of matter. This work provides a unified framework to understand this interaction both when considering fields oscillating at low frequencies─dielectrophoresis─and high frequencies─optical tweezers. We draw useful parallels between these two techniques, discuss the different and often unstated assumptions they are based upon, and illustrate key applications in the fields of physical and analytical chemistry, biosensing, and colloidal science.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
























Similar articles
-
Optothermal Manipulations of Colloidal Particles and Living Cells.Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25. Acc Chem Res. 2018. PMID: 29799720 Free PMC article. Review.
-
Massively parallel manipulation of single cells and microparticles using optical images.Nature. 2005 Jul 21;436(7049):370-2. doi: 10.1038/nature03831. Nature. 2005. PMID: 16034413
-
Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.J Vis Exp. 2011 Sep 27;(55):3390. doi: 10.3791/3390. J Vis Exp. 2011. PMID: 21988841 Free PMC article.
-
Measurements of liposome biomechanical properties by combining line optical tweezers and dielectrophoresis.J Liposome Res. 2015 Sep;25(3):202-210. doi: 10.3109/08982104.2014.987784. Epub 2014 Dec 9. J Liposome Res. 2015. PMID: 25487171
-
Physics of optical tweezers.Methods Cell Biol. 2007;82:207-36. doi: 10.1016/S0091-679X(06)82006-6. Methods Cell Biol. 2007. PMID: 17586258 Review.
Cited by
-
Gradient and curl optical torques.Nat Commun. 2024 Jul 24;15(1):6230. doi: 10.1038/s41467-024-50440-8. Nat Commun. 2024. PMID: 39043631 Free PMC article.
-
Enhancing the Accuracy of Measuring DEP Force Applied on Cells by Considering the Friction Effect.Biosensors (Basel). 2023 May 12;13(5):540. doi: 10.3390/bios13050540. Biosensors (Basel). 2023. PMID: 37232901 Free PMC article.
-
Harnessing Photon Recoil for Enhanced Torque on Light-Driven Metarotors.Nano Lett. 2025 Mar 26;25(12):4832-4837. doi: 10.1021/acs.nanolett.4c06410. Epub 2025 Mar 3. Nano Lett. 2025. PMID: 40033159 Free PMC article.
-
Microfluidic Nanoparticle Separation for Precision Medicine.Adv Sci (Weinh). 2025 Jan;12(4):e2411278. doi: 10.1002/advs.202411278. Epub 2024 Dec 4. Adv Sci (Weinh). 2025. PMID: 39632600 Free PMC article. Review.
-
All-Optical Trapping and Programmable Transport of Gold Nanorods with Simultaneous Orientation and Spinning Control.ACS Nano. 2024 Oct 8;18(40):27738-27751. doi: 10.1021/acsnano.4c10264. Epub 2024 Sep 25. ACS Nano. 2024. PMID: 39322421 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources