Effect of Personalized Accelerated Pacing on Quality of Life, Physical Activity, and Atrial Fibrillation in Patients With Preclinical and Overt Heart Failure With Preserved Ejection Fraction: The myPACE Randomized Clinical Trial
- PMID: 36723919
- PMCID: PMC9996402
- DOI: 10.1001/jamacardio.2022.5320
Effect of Personalized Accelerated Pacing on Quality of Life, Physical Activity, and Atrial Fibrillation in Patients With Preclinical and Overt Heart Failure With Preserved Ejection Fraction: The myPACE Randomized Clinical Trial
Abstract
Importance: Patients with heart failure with preserved ejection fraction (HFpEF) with a pacemaker may benefit from a higher, more physiologic backup heart rate than the nominal 60 beats per minute (bpm) setting.
Objective: To assess the effects of a moderately accelerated personalized backup heart rate compared with 60 bpm (usual care) in patients with preexisting pacemaker systems that limit pacemaker-mediated dyssynchrony.
Design, setting, and participants: This blinded randomized clinical trial enrolled patients with stage B and C HFpEF from the University of Vermont Medical Center pacemaker clinic between June 2019 and November 2020. Analysis was modified intention to treat.
Interventions: Participants were randomly assigned to personalized accelerated pacing or usual care and were followed up for 1 year. The personalized accelerated pacing heart rate was calculated using a resting heart rate algorithm based on height and modified by ejection fraction.
Main outcomes and measures: The primary outcome was the serial change in Minnesota Living with Heart Failure Questionnaire (MLHFQ) score. Secondary end points were changes in N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, pacemaker-detected physical activity, atrial fibrillation from baseline, and adverse clinical events.
Results: Overall, 107 participants were randomly assigned to the personalized accelerated pacing (n = 50) or usual care (n = 57) groups. The median (IQR) age was 75 (69-81) years, and 48 (48%) were female. Over 1-year follow-up, the median (IQR) pacemaker-detected heart rate was 75 (75-80) bpm in the personalized accelerated pacing arm and 65 (63-68) bpm in usual care. MLHFQ scores improved in the personalized accelerated pacing group (median [IQR] baseline MLHFQ score, 26 [8-45]; at 1 month, 15 [2-25]; at 1 year, 9 [4-21]; P < .001) and worsened with usual care (median [IQR] baseline MLHFQ score, 19 [6-42]; at 1 month, 23 [5-39]; at 1 year, 27 [7-52]; P = .03). In addition, personalized accelerated pacing led to improved changes in NT-proBNP levels (mean [SD] decrease of 109 [498] pg/dL vs increase of 128 [537] pg/dL with usual care; P = .02), activity levels (mean [SD], +47 [67] minutes per day vs -22 [35] minutes per day with usual care; P < .001), and device-detected atrial fibrillation (27% relative risk reduction compared with usual care; P = .04) over 1-year of follow-up. Adverse clinical events occurred in 4 patients in the personalized accelerated pacing group and 11 patients in usual care.
Conclusions and relevance: In this study, among patients with HFpEF and pacemakers, treatment with a moderately accelerated, personalized pacing rate was safe and improved quality of life, NT-proBNP levels, physical activity, and atrial fibrillation compared with the usual 60 bpm setting.
Trial registration: ClinicalTrials.gov Identifier: NCT04721314.
Conflict of interest statement
Figures
Comment in
-
Comments on the myPACE Randomized Clinical Trial.JAMA Cardiol. 2023 Aug 1;8(8):793-794. doi: 10.1001/jamacardio.2023.1740. JAMA Cardiol. 2023. PMID: 37378975 Clinical Trial. No abstract available.
-
Comments on the myPACE Randomized Clinical Trial.JAMA Cardiol. 2023 Aug 1;8(8):794-795. doi: 10.1001/jamacardio.2023.1743. JAMA Cardiol. 2023. PMID: 37378997 Clinical Trial. No abstract available.
References
-
- Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810-1852. - PubMed
-
- Kuznetsova T, Herbots L, López B, et al. Prevalence of left ventricular diastolic dysfunction in a general population. Circ Heart Fail. 2009;2(2):105-112. - PubMed
-
- Heidenreich PA, Albert NM, Allen LA, et al. ; American Heart Association Advocacy Coordinating Committee; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council . Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606-619. - PMC - PubMed
-
- Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895-e1032. - PubMed
-
- Cleland JGF, Bunting KV, Flather MD, et al. ; Beta-blockers in Heart Failure Collaborative Group . Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur Heart J. 2018;39(1):26-35. - PMC - PubMed
Publication types
MeSH terms
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
