Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr:172:105004.
doi: 10.1016/j.ijmedinf.2023.105004. Epub 2023 Jan 25.

AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments

Affiliations
Free article

AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments

Vahid Farrahi et al. Int J Med Inform. 2023 Apr.
Free article

Abstract

Objective: Although machine learning techniques have been repeatedly used for activity prediction from wearable devices, accurate classification of 24-hour activity behaviour categories from accelerometry data remains a challenge. We developed and validated a deep learning-based framework for classifying 24-hour activity behaviours from wrist-worn accelerometers.

Methods: Using an openly available dataset with free-living wrist-based raw accelerometry data from 151 participants (aged 18-91 years), we developed a deep learning framework named AccNet24 to classify 24-hour activity behaviours. First, the acceleration signal (x, y, and z-axes) was segmented into 30-second nonoverlapping windows, and signal-to-image conversion was performed for each segment. Deep features were automatically extracted from the signal images using transfer learning and transformed into a lower-dimensional feature space. These transformed features were then employed to classify the activity behaviours as sleep, sedentary behaviour, and light-intensity (LPA) and moderate-to-vigorous physical activity (MVPA) using a bidirectional long short-term memory (BiLSTM) recurrent neural network. AccNet24 was trained and validated with data from 101 and 25 randomly selected participants and tested with the remaining unseen 25 participants. We also extracted 112 hand-crafted time and frequency domain features from 30-second windows and used them as inputs to five commonly used machine learning classifiers, including random forest, support vector machines, artificial neural networks, decision tree, and naïve Bayes to classify the 24-hour activity behaviour categories.

Results: Using the same training, validation, and test data and window size, the classification accuracy of AccNet24 outperformed the accuracy of the other five machine learning classification algorithms by 16%-30% on unseen data.

Conclusion: AccNet24, relying on signal-to-image conversion, deep feature extraction, and BiLSTM achieved consistently high accuracy (>95 %) in classifying the 24-hour activity behaviour categories as sleep, sedentary, LPA, and MVPA. The next generation accelerometry analytics may rely on deep learning techniques for activity prediction.

Keywords: Activity classification; Activity recognition; Machine learning; Raw acceleration; Transfer learning.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources