Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb;614(7946):70-74.
doi: 10.1038/s41586-022-05479-2. Epub 2023 Feb 1.

Tunable itinerant spin dynamics with polar molecules

Affiliations

Tunable itinerant spin dynamics with polar molecules

Jun-Ru Li et al. Nature. 2023 Feb.

Abstract

Strongly interacting spins underlie many intriguing phenomena and applications1-4 ranging from magnetism to quantum information processing. Interacting spins combined with motion show exotic spin transport phenomena, such as superfluidity arising from pairing of spins induced by spin attraction5,6. To understand these complex phenomena, an interacting spin system with high controllability is desired. Quantum spin dynamics have been studied on different platforms with varying capabilities7-13. Here we demonstrate tunable itinerant spin dynamics enabled by dipolar interactions using a gas of potassium-rubidium molecules confined to two-dimensional planes, where a spin-1/2 system is encoded into the molecular rotational levels. The dipolar interaction gives rise to a shift of the rotational transition frequency and a collision-limited Ramsey contrast decay that emerges from the coupled spin and motion. Both the Ising and spin-exchange interactions are precisely tuned by varying the strength and orientation of an electric field, as well as the internal molecular state. This full tunability enables both static and dynamical control of the spin Hamiltonian, allowing reversal of the coherent spin dynamics. Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics using the strong, tunable dipolar interaction.

PubMed Disclaimer

References

    1. Manousakis, E. The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides. Rev. Mod. Phys. https://doi.org/10.1103/RevModPhys.63.1 (1991). - DOI
    1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). - DOI
    1. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992). - DOI
    1. Nielsen, M. A. & Chuang, I. Quantum computation and quantum information. Am. J. Phys. 70, 558–559 (2002). - DOI
    1. Levin, K. & Hulet, R. G. in Ultracold Bosonic and Fermionic Gases (eds. Levin, K. et al.) Vol. 5, 69–94 (Elsevier, 2012).

Publication types

LinkOut - more resources