A phase 1 trial of NY-ESO-1-specific TCR-engineered T-cell therapy combined with a lymph node-targeting nanoparticulate peptide vaccine for the treatment of advanced soft tissue sarcoma
- PMID: 36727538
- DOI: 10.1002/ijc.34453
A phase 1 trial of NY-ESO-1-specific TCR-engineered T-cell therapy combined with a lymph node-targeting nanoparticulate peptide vaccine for the treatment of advanced soft tissue sarcoma
Abstract
The efficacy of immune checkpoint inhibitors is limited in refractory solid tumors. T-cell receptor gene-modified T (TCR-T)-cell therapy has attracted attention as a new immunotherapy for refractory cold tumors. We first investigated the preclinical efficacy and mode of action of TCR-T cells combined with the pullulan nanogel:long peptide antigen (LPA) vaccine in a mouse sarcoma model that is resistant to immune checkpoint inhibition. Without lymphodepletion, the pullulan nanogel:LPA vaccine markedly increased the number of TCR-T cells in the draining lymph node and tumor tissue. This change was associated with enhanced CXCR3 expression in TCR-T cells in the draining lymph node. In the phase 1 trial, autologous New York esophageal squamous cell carcinoma 1 (NY-ESO-1)-specific TCR-T cells were infused twice into HLA-matched patients with NY-ESO-1+ soft tissue sarcoma (STS). The pullulan nanogel:LPA vaccine contains an epitope recognized by TCR-T cells, and it was subcutaneously injected 1 day before and 7 days after the infusion of TCR-T cells. Lymphodepletion was not performed. Three patients with refractory synovial sarcoma (SS) were treated. Two out of the three patients developed cytokine release syndrome (CRS) with low-to-moderate cytokine level elevation. We found obvious tumor shrinkage lasting for more than 2 years by tumor imaging and long-term persistence of TCR-T cells in one patient. In conclusion, NY-ESO-1-specific TCR-T-cell therapy plus vaccination with the pullulan nanogel carrying an LPA containing the NY-ESO-1 epitope without lymphodepletion is feasible and can induce promising long-lasting therapeutic effects in refractory SS (Registration ID: JMA-IIA00346).
Keywords: NY-ESO-1; TCR-T-cell; adoptive cell therapy; nanoparticulate vaccine; soft tissue sarcoma.
© 2023 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
References
REFERENCES
-
- Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724-740.
-
- Akahori Y, Wang L, Yoneyama M, et al. Antitumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood. 2018;132:1134-1145.
-
- Ma L, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365:162-168.
-
- Reinhard K, Rengstl B, Oehm P, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367:446-453.
-
- Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J. Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules. 1993;26:3062-3068.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases