Tumor lactic acid: a potential target for cancer therapy
- PMID: 36729274
- DOI: 10.1007/s12272-023-01431-8
Tumor lactic acid: a potential target for cancer therapy
Abstract
Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy.
Keywords: Anti-tumor therapy; Lactate dehydrogenases; Lactic acid; Lactic acid blocking strategy; Monocarboxylate transporters; Tumors.
© 2023. The Pharmaceutical Society of Korea.
Similar articles
-
Lactate in the tumour microenvironment: From immune modulation to therapy.EBioMedicine. 2021 Nov;73:103627. doi: 10.1016/j.ebiom.2021.103627. Epub 2021 Oct 14. EBioMedicine. 2021. PMID: 34656878 Free PMC article. Review.
-
Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters.J Mol Med (Berl). 2016 Feb;94(2):155-71. doi: 10.1007/s00109-015-1307-x. Epub 2015 Jun 24. J Mol Med (Berl). 2016. PMID: 26099350 Free PMC article. Review.
-
Monocarboxylate transporters in cancer.Mol Metab. 2020 Mar;33:48-66. doi: 10.1016/j.molmet.2019.07.006. Epub 2019 Jul 27. Mol Metab. 2020. PMID: 31395464 Free PMC article. Review.
-
Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?J Pathol. 2013 Aug;230(4):350-5. doi: 10.1002/path.4218. J Pathol. 2013. PMID: 23729358 Free PMC article. Review.
-
Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis.Curr Pharm Des. 2012;18(10):1319-30. doi: 10.2174/138161212799504902. Curr Pharm Des. 2012. PMID: 22360558 Review.
Cited by
-
hsa_circ_0003596, as a novel oncogene, regulates the malignant behavior of renal cell carcinoma by modulating glycolysis.Eur J Med Res. 2023 Sep 2;28(1):315. doi: 10.1186/s40001-023-01288-z. Eur J Med Res. 2023. PMID: 37660068 Free PMC article.
-
Mechanistic Insights on Microbiota-Mediated Development and Progression of Esophageal Cancer.Cancers (Basel). 2024 Sep 27;16(19):3305. doi: 10.3390/cancers16193305. Cancers (Basel). 2024. PMID: 39409925 Free PMC article. Review.
-
VLDL and LDL Subfractions Enhance the Risk Stratification of Individuals Who Underwent Epstein-Barr Virus-Based Screening for Nasopharyngeal Carcinoma: A Multicenter Cohort Study.Adv Sci (Weinh). 2024 Jun;11(22):e2308765. doi: 10.1002/advs.202308765. Epub 2024 Mar 23. Adv Sci (Weinh). 2024. PMID: 38520712 Free PMC article.
-
Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy.Cells. 2024 Nov 20;13(22):1924. doi: 10.3390/cells13221924. Cells. 2024. PMID: 39594672 Free PMC article. Review.
-
Potential role of lactylation in intrinsic immune pathways in lung cancer.Front Pharmacol. 2025 Mar 17;16:1533493. doi: 10.3389/fphar.2025.1533493. eCollection 2025. Front Pharmacol. 2025. PMID: 40166469 Free PMC article. Review.
References
-
- Afonso J, Santos LL, Morais A, Amaro T, Longatto-Filho A, Baltazar F (2016) Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness. Cell Cycle 15:368–380. https://doi.org/10.1080/15384101.2015.1121329 - DOI
-
- Ahmed K, Tunaru S, Tang C, Muller M, Gille A, Sassmann A, Hanson J, Offermanns S (2010) An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab 11:311–319. https://doi.org/10.1016/j.cmet.2010.02.012 - DOI
-
- Angelin A, Gil-De-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ 3rd, Kopinski PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock WW, Beier UH (2017) Foxp3 reprograms T cell metabolism to function in low-glucose high-lactate environments. Cell Metab 25:1282-1293 e1287. https://doi.org/10.1016/j.cmet.2016.12.018 - DOI
-
- Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernandez-Perez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM, Medico E, Pietrantonio F, Volante M, Pasini D, Chiarugi P, Giordano S, Corso S (2018) Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28:848-865 e846. https://doi.org/10.1016/j.cmet.2018.08.006 - DOI
-
- Baggstrom MQ, Qi Y, Koczywas M, Argiris A, Johnson EA, Millward MJ, Murphy SC, Erlichman C, Rudin CM, Govindan R, Mayo Phase C, California C (2011) A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thorac Oncol 6:1757–1760. https://doi.org/10.1097/JTO.0b013e31822e2941 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical