Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 27;63(4):1371-1385.
doi: 10.1021/acs.jcim.2c01100. Epub 2023 Feb 2.

Quantum Dynamics and Bi Metal Force Field Parameterization Yielding Significant Antileishmanial Targets

Affiliations

Quantum Dynamics and Bi Metal Force Field Parameterization Yielding Significant Antileishmanial Targets

Naila Zaman et al. J Chem Inf Model. .

Abstract

Amid emerging drug resistance to metal inhibitors, high toxicity, and onerous drug delivery procedures, the computational design of alternate formulations encompassing functional metal-containing compounds greatly relies on large-scale atomistic simulations. Simulations particularly with Au(I), Ag, Bi(V), and Sb(V) pose a major challenge to elucidate their molecular mechanism due to the absence of force field parameters. This study thus quantum mechanically derives force field parameters of Bi(V) as an extension of the previous experimental study conducted on heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR')2]. We have modeled two organo-bismuth(V) carboxylates, which are optimized and parameterized along with the famous pentavalent antimonial drug: meglumine antimoniate using quantum mechanics original Seminarian methods with the SBKJC effective core potential (ECP) basis set. Furthermore, molecular dynamics (MD) simulations of bismuth- and antimony-containing compounds in complex with two enzymes, trypanothione synthetase-amidase (TSA) and trypanothione reductase, are performed to target the (T(SH)2) pathway at multiple points. MD simulations provide novel insights into the binding mechanism of TSA and highlight the role of a single residue Arg569 in modulating the ligand dynamics. Moreover, the presence of an ortho group in a ligand is emphasized to facilitate interactions between Arg569 and the active site residue Arg313 for higher inhibitory activity of TSA. This preliminary generation of parameters specific to bismuth validated by simulations in replica will become a preamble of future computational and experimental research work to open avenues for newer and suitable drug targets.

PubMed Disclaimer

Publication types