Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 15:638:84-98.
doi: 10.1016/j.jcis.2023.01.015. Epub 2023 Jan 7.

Predicting surfactant phase behavior with a molecularly informed field theory

Affiliations

Predicting surfactant phase behavior with a molecularly informed field theory

Kevin Shen et al. J Colloid Interface Sci. .

Abstract

Hypothesis: The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations.

Simulation work: We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements.

Findings: The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.

Keywords: Coarse-graining; Field theory; Formulations; Micelle; Microphase; Multiscale; SDS; Self-assembly; Simulation; Surfactant.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Substances

LinkOut - more resources