Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 15;145(6):3786-3794.
doi: 10.1021/jacs.2c13318. Epub 2023 Feb 4.

Metallomimetic Chemistry of a Cationic, Geometrically Constrained Phosphine in the Catalytic Hydrodefluorination and Amination of Ar-F Bonds

Affiliations

Metallomimetic Chemistry of a Cationic, Geometrically Constrained Phosphine in the Catalytic Hydrodefluorination and Amination of Ar-F Bonds

Karina Chulsky et al. J Am Chem Soc. .

Abstract

The synthesis, isolation, and reactivity of a cationic, geometrically constrained σ3-P compound in the hexaphenyl-carbodiphosphoranyl-based pincer-type ligand (1+) are reported. 1+ reacts with electron-poor fluoroarenes via an oxidative addition-type reaction of the C-F bond to the PIII-center, yielding new fluorophosphorane-type species (PV). This reactivity of 1+ was used in the catalytic hydrodefluorination of Ar-F bonds with PhSiH3, and in a catalytic C-N bond-forming cross-coupling reactions between fluoroarenes and aminosilanes. Importantly, 1+ in these catalytic reactions closely mimics the mode of action of the transition metal-based catalysts.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Metallomimetic chemistry of geometrically constrained PIII species. Previously reported stepwise, noncatalytic hydrodefluorination of fluoroarenes (top); this work, catalytic hydrodefluorination and amination of fluoroarenes (bottom).
Figure 2
Figure 2
POV-ray depiction of [1+][PF6]. Thermal ellipsoids at 30% probability; hydrogen atoms were omitted for clarity.
Scheme 1
Scheme 1. Synthesis of [1+][Cl] and [1+][PF6]
Figure 3
Figure 3
QTAIM analysis of 1+.
Scheme 2
Scheme 2. Reaction between [1+][PF6] and Excess of 3 Producing the Product of a Formal Oxidative Addition-type Reaction, [4+][PF6]
The 31P NMR spectrum of [4+][PF6] is shown in the inset.
Scheme 3
Scheme 3. Thermally Induced Reaction of [4+][PF6] Producing [1+-F2][PF6] and 5
Figure 4
Figure 4
POV-ray depiction of [1+-F2][PF6]. Thermal ellipsoids at 30% probability; hydrogen atoms were omitted for clarity.
Scheme 4
Scheme 4. Stoichiometric Reaction between [4+][PF6] and PhSiH3 Producing the Product of Hydrodefluorination 7, [1+][PF6], and PhSiF3 via Intermediate [6+][PF6]
Scheme 5
Scheme 5. Hydrodefluorination and C–N Bond-Forming Cross-Coupling Reactions Catalyzed by 1+
Figure 5
Figure 5
DFT-calculated (BP86-D3/def2TZVP) potential energy surface of the proposed mechanism of 1+-catalyzed hydrodefluorination of 3 by PhSiH3. Free Gibbs energies (enthalpies) are given relative to the starting materials.

References

    1. Sigmund L. M.; Maiera R.; Greb L. The inversion of tetrahedral p-block element compounds: general trends and the relation to the second-order Jahn–Teller effect. Chem. Sci. 2022, 13, 510–521. 10.1039/D1SC05395G. - DOI - PMC - PubMed
    2. Ruppert H.; Sigmund L. M.; Greb L. Calix[4]pyrroles as ligands: recent progress with a focus on the emerging p-block element chemistry. Chem. Commun. 2021, 57, 1175110.1039/D1CC05120B. - DOI - PubMed
    3. Greb L.; Ebner F.; Ginzburg Y.; Sigmund L. M. Element-Ligand Cooperativity with p-Block Elements. Eur. J. Inorg. Chem. 2020, 2020, 3030–3047. 10.1002/ejic.202000449. - DOI
    4. Ebner F.; Greb L. An isolable, crystalline complex of square-planar silicon(IV). Chem 2021, 7, 2151–2159. 10.1016/j.chempr.2021.05.002. - DOI - PMC - PubMed
    5. Ebner F.; Wadepohl H.; Greb L. Calix[4]pyrrole Aluminate: A Planar Tetracoordinate Aluminum(III) Anion and Its Unusual Lewis Acidity. J. Am. Chem. Soc. 2019, 141, 18009–18012. 10.1021/jacs.9b10628. - DOI - PubMed
    6. Ben Saida A.; Chardon A.; Osi A.; Tumanov N.; Wouters J.; Adjieufack A. I.; Champagne B.; Berionni G. Pushing the Lewis Acidity Boundaries of Boron Compounds With Non-Planar Triarylboranes Derived from Triptycenes. Angew. Chem., Int. Ed. 2019, 58, 16889–16893. 10.1002/anie.201910908. - DOI - PubMed
    7. Ruppert H.; Greb L. Calix[4]pyrrolato Stannate(II): A Tetraamido Tin(II) Dianion and Strong Metal-Centered σ-Donor. Angew. Chem., Int. Ed. 2022, e20211661510.1002/anie.202116615. - DOI - PMC - PubMed
    8. Volodarsky S.; Malahov I.; Bawari D.; Diab M.; Malik N.; Tumanskii B.; Dobrovetsky R. Geometrically constrained square pyramidal phosphoranide. Chem. Sci. 2022, 13, 5957–5963. 10.1039/D2SC01060G. - DOI - PMC - PubMed
    9. Kindervater M. B.; Marczenko K. M.; Werner-Zwanziger U.; Chitnis S. S. A Redox-Confused Bismuth(I/III) Triamide with a T-Shaped Planar Ground State. Angew. Chem., Int. Ed. 2019, 58, 7850–7855. 10.1002/anie.201903354. - DOI - PubMed
    10. Marczenko K. M.; Zurakowski J. A.; Kindervater M. B.; Jee S.; Hynes T.; Roberts N.; Park S.; Werner-Zwanziger U.; Lumsden M.; Langelaan D. N.; Chitnis S. S. Periodicity in Structure, Bonding, and Reactivity for p-Block Complexes of a Geometry Constraining Triamide Ligand. Chem. - Eur. J. 2019, 25, 16414–16424. 10.1002/chem.201904361. - DOI - PubMed
    11. Hynes T.; Masuda J. D.; Chitnis S. S. Mesomeric Tuning at Planar Bi centres: Unexpected Dimerization and Benzyl C-H Activation in [CN2]Bi Complexes. ChemPlusChem 2022, 87, e20220024410.1002/cplu.202200244. - DOI - PubMed
    12. Karnbrock S. B. H.; Golz C.; Mata R. A.; Alcarazo M. Ligand-Enabled Disproportionation of 1,2-Diphenylhydrazine at a PV-Center. Angew. Chem., Int. Ed. 2022, 61, e20220745010.1002/anie.202207450. - DOI - PMC - PubMed
    1. Abbenseth J.; Goicoechea J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. Chem. Sci. 2020, 11, 9728–9740. 10.1039/D0SC03819A. - DOI - PMC - PubMed
    2. Kundu S. Pincer-Type Ligand-Assisted Catalysis and Small-Molecule Activation by non-VSEPR Main-Group Compounds. Chem. Asian J. 2020, 15, 3209–3224. 10.1002/asia.202000800. - DOI - PubMed
    1. Lipshultz J. M.; Li G.; Radosevich A. T. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J. Am. Chem. Soc. 2021, 143, 1699–1721. 10.1021/jacs.0c12816. - DOI - PMC - PubMed
    1. Arduengo A. J.; Stewart C. A.; Davidson F.; Dixon D. A.; Becker J. Y.; Culley S. A.; Mizen M. B. The synthesis, structure, and chemistry of 10-Pn-3 systems: tricoordinate hypervalent pnicogen compounds. J. Am. Chem. Soc. 1987, 109, 627–647. 10.1021/ja00237a001. - DOI
    1. Dunn N. L.; Ha M.; Radosevich A. T. Main Group Redox Catalysis: Reversible PIII/PV Redox Cycling at a Phosphorus Platform. J. Am. Chem. Soc. 2012, 134, 11330–11333. 10.1021/ja302963p. - DOI - PubMed