Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May;49(5):1129-1136.
doi: 10.1016/j.ultrasmedbio.2022.12.014. Epub 2023 Feb 3.

Real-Time Automated Segmentation of Median Nerve in Dynamic Ultrasonography Using Deep Learning

Affiliations
Free article

Real-Time Automated Segmentation of Median Nerve in Dynamic Ultrasonography Using Deep Learning

Cheng-Liang Yeh et al. Ultrasound Med Biol. 2023 May.
Free article

Abstract

Objective: The morphological dynamics of the median nerve across the level extracted from dynamic ultrasonography are valuable for the diagnosis and evaluation of carpal tunnel syndrome (CTS), but the data extraction requires tremendous labor to manually segment the nerve across the image sequence. Our aim was to provide visually real-time, automated median nerve segmentation and subsequent data extraction in dynamic ultrasonography.

Methods: We proposed a deep-learning model modified from SOLOv2 and tailored for median nerve segmentation. Ensemble strategies combining several state-of-the-art models were also employed to examine whether the segmentation accuracy could be improved. Image data were acquired from nine normal participants and 59 patients with idiopathic CTS.

Discussion: Our model outperformed several state-of-the-art models with respect to inference speed, whereas the segmentation accuracy was on a par with that achieved by these models. When evaluated on a single 1080Ti GPU card, our model achieved an intersection over union score of 0.855 and Dice coefficient of 0.922 at 28.9 frames/s. The ensemble models slightly improved segmentation accuracy.

Conclusion: Our model has great potential for use in the clinical setting, as the real-time, automated extraction of the morphological dynamics of the median nerve allows clinicians to diagnose and treat CTS as the images are acquired.

Keywords: Automated nerve segmentation; Carpal tunnel syndrome; Deep learning; Dynamic ultrasonography.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest The authors declare no competing interests.

Publication types

MeSH terms