Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul;180(14):1862-1877.
doi: 10.1111/bph.16050. Epub 2023 Feb 27.

Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells

Affiliations
Free article

Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells

Man Jiang et al. Br J Pharmacol. 2023 Jul.
Free article

Abstract

Background and purpose: Piezo1 channels are mechanosensitive cationic channels that are activated by mechanical stretch or shear stress. Endothelial Piezo1 activation by shear stress caused by blood flow induces ATP release from endothelial cells; however, the link between shear stress and endothelial ATP production is unclear.

Experimental approach: The mitochondrial respiratory function of cells was measured by using high-resolution respirometry system Oxygraph-2k. The intracellular Ca2+ concentration was evaluated by using Fluo-4/AM and mitochondrial Ca2+ concentration by Rhod-2/AM.

Key results: The specific Piezo1 channel activator Yoda1 or its analogue Dooku1 increased [Ca2+ ]i in human umbilical vein endothelial cells (HUVECs), and both Yoda1 and Dooku1 increased mitochondrial oxygen consumption rates (OCRs) and mitochondrial ATP production in HUVECs and primary cultured rat aortic endothelial cells (RAECs). Knockdown of Piezo1 inhibited Yoda1- and Dooku1-induced increases of mitochondrial OCRs and mitochondrial ATP production in HUVECs. The shear stress mimetics, Yoda1 and Dooku1, and the Piezo1 knock-down technique also demonstrated that Piezo1 activation increased glycolysis in HUVECs. Chelating extracellular Ca2+ with EGTA or chelating cytosolic Ca2+ with BAPTA-AM did not affect Yoda1- and Dooku1-induced increases of mitochondrial OCRs and ATP production, but chelating cytosolic Ca2+ inhibited Yoda1- and Dooku1-induced increase of glycolysis. Confocal microscopy showed that Piezo1 channels are present in mitochondria of endothelial cells, and Yoda1 and Dooku1 increased mitochondrial Ca2+ in endothelial cells.

Conclusion and implications: Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells, suggesting a novel role of Piezo1 channel in endothelial ATP production.

Keywords: Piezo1 activators; Piezo1 channel; endothelial cells; glycolysis; mitochondrial respiration.

PubMed Disclaimer

References

REFERENCES

    1. Alexander, S. P., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Koesling, D., … Wong, S. S. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 178(S1), S313-S411. https://doi.org/10.1111/bph.15542
    1. Alexander, S. P., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Catterall, W. A., … Zhu, M. (2021). The concise guide to pharmacology 2021/22: Ion channels. British Journal of Pharmacology, 178, S157-S245. https://doi.org/10.1111/bph.15539
    1. Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of pharmacology. British Journal of Pharmacology, 175(3), 407-411. https://doi.org/10.1111/bph.14112
    1. Blythe, N. M., Muraki, K., Ludlow, M. J., Stylianidis, V., Gilbert, H. T. J., Evans, E. L., Cuthbertson, K., Foster, R., Swift, J., Li, J., Drinkhill, M. J., van Nieuwenhoven, F. A., Porter, K. E., Beech, D. J., & Turner, N. A. (2019). Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion. The Journal of Biological Chemistry, 294(46), 17395-17408. https://doi.org/10.1074/jbc.RA119.009167
    1. Botello-Smith, W. M., Jiang, W., Zhang, H., Ozkan, A. D., Lin, Y. C., Pham, C. N., Lacroix, J. J., & Luo, Y. (2019). A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nature Communications, 10(1), 4503. https://doi.org/10.1038/s41467-019-12501-1

Publication types

LinkOut - more resources