Highly Efficient and Stable FA-Based Quasi-2D Ruddlesden-Popper Perovskite Solar Cells by the Incorporation of β-Fluorophenylethanamine Cations
- PMID: 36744546
- DOI: 10.1002/adma.202210836
Highly Efficient and Stable FA-Based Quasi-2D Ruddlesden-Popper Perovskite Solar Cells by the Incorporation of β-Fluorophenylethanamine Cations
Abstract
2D Ruddlesden-Popper (2D RP) perovskite, with attractive environmental and structural stability, has shown great application in perovskite solar cells (PSCs). However, the relatively inferior photovoltaic efficiencies of 2D PSCs limit their further application. To address this issue, β-fluorophenylethanamine (β-FPEA) as a novel spacer cation is designed and employed to develop stable and efficient quasi-2D RP PSCs. The strong dipole moment of the β-FPEA enhances the interactions between the cations and [PbI6 ]4- octahedra, thus improving the charge dissociation of quasi-2D RP perovskite. Additionally, the introduction of the β-FPEA cation optimizes the energy level alignment, improves the crystallinity, stabilizes both the mixed phase and a-FAPbI3 phase of the quasi-2D RP perovskite film, prolongs the carrier diffusion length, increases the carrier lifetime and decreases the trap density. By incorporating the β-FPEA, the quasi-2D RP PSCs exhibit a power conversion efficiency (PCE) of 16.77% (vs phenylethylammonium (PEA)-based quasi-2D RP PSCs of 12.81%) on PEDOT:PSS substrate and achieve a champion PCE of 19.11% on the PTAA substrate. It is worth noting that the unencapsulated β-FPEA-based quasi-2D RP PSCs exhibit considerably improved thermal and moisture stability. These findings provide an effective strategy for developing novel spacer cations for high-performance 2D RP PSCs.
Keywords: Ruddlesden-Popper perovskites; organic spacers; perovskite solar cells; quasi-2D perovskites; trap density.
© 2023 Wiley-VCH GmbH.
Similar articles
-
Unraveling the Impact of a Cyclized Phenylethylamine-Derived Spacer Cation on the Structural, Electrical, and Photovoltaic Performance of Quasi-2D Ruddlesden-Popper Perovskites.Small. 2025 Jun;21(23):e2501863. doi: 10.1002/smll.202501863. Epub 2025 Apr 24. Small. 2025. PMID: 40270297
-
Selenophene-Based 2D Ruddlesden-Popper Perovskite Solar Cells with an Efficiency Exceeding 19.J Am Chem Soc. 2023 Oct 4;145(39):21687-21695. doi: 10.1021/jacs.3c08604. Epub 2023 Sep 26. J Am Chem Soc. 2023. PMID: 37750835
-
Organic-Salt-Assisted Crystal Growth and Orientation of Quasi-2D Ruddlesden-Popper Perovskites for Solar Cells with Efficiency over 19.Adv Mater. 2020 Aug;32(33):e2001470. doi: 10.1002/adma.202001470. Epub 2020 Jul 6. Adv Mater. 2020. PMID: 32627858
-
Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells.Adv Mater. 2022 Feb;34(7):e2106822. doi: 10.1002/adma.202106822. Epub 2022 Jan 5. Adv Mater. 2022. PMID: 34676930 Review.
-
Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden-Popper Perovskites for Efficient Perovskite Solar Cells.ACS Appl Mater Interfaces. 2022 Aug 3;14(30):34189-34197. doi: 10.1021/acsami.1c16124. Epub 2021 Nov 18. ACS Appl Mater Interfaces. 2022. PMID: 34793120 Review.
Cited by
-
Dicyandiamide-Driven Tailoring of the n-Value Distribution and Interface Dynamics for High-Performance ACI 2D Perovskite Solar Cells.Nanomicro Lett. 2025 Jun 23;17(1):305. doi: 10.1007/s40820-025-01817-x. Nanomicro Lett. 2025. PMID: 40549227 Free PMC article.
-
Fast, Highly Stable, and Low-Bandgap 2D Halide Perovskite Photodetectors Based on Short-Chained Fluorinated Piperidinium as a Spacer.ACS Appl Mater Interfaces. 2025 Jan 8;17(1):1743-1759. doi: 10.1021/acsami.4c18202. Epub 2024 Dec 16. ACS Appl Mater Interfaces. 2025. PMID: 39681536 Free PMC article.
-
Molecular Structure Tailoring of Organic Spacers for High-Performance Ruddlesden-Popper Perovskite Solar Cells.Nanomicro Lett. 2024 Oct 10;17(1):35. doi: 10.1007/s40820-024-01500-7. Nanomicro Lett. 2024. PMID: 39387997 Free PMC article. Review.
-
Additive Engineering for Stable and Efficient Dion-Jacobson Phase Perovskite Solar Cells.Nanomicro Lett. 2023 May 24;15(1):134. doi: 10.1007/s40820-023-01110-9. Nanomicro Lett. 2023. PMID: 37221320 Free PMC article. Review.
-
Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers.Nanomicro Lett. 2023 Jul 5;15(1):169. doi: 10.1007/s40820-023-01141-2. Nanomicro Lett. 2023. PMID: 37407722 Free PMC article. Review.
References
-
- J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587.
-
- D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, F. T. Gustavo, F. W. John, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, H. F. Richard, Q. Gong, H. J. Snaith, R. Zhu, Science 2018, 360, 1442.
-
- H. Tsai, W. Nie, J. C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, Nature 2016, 536, 312.
-
- R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo, D. Fenning, G. Xu, S. Nuryyeva, T. Huang, Y. Zhao, J. L. Yang, J. Zhu, M. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509.
-
- G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng, H. Zhang, H. Wang, J. Liang, F. Ye, Q. Liang, H. Yin, Y. Chen, Y. Zhuang, S. Li, B. Gao, J. Wang, T. Shi, X. Wang, X. Lu, H. Wu, J. Hou, D. Lei, S. K. So, Y. Yang, G. Fang, G. Li, Nat. Photonics 2021, 15, 681.
Grants and funding
LinkOut - more resources
Full Text Sources