Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 15;145(6):3606-3614.
doi: 10.1021/jacs.2c12668. Epub 2023 Feb 7.

Biobased, Degradable, and Conjugated Poly(Azomethine)s

Affiliations

Biobased, Degradable, and Conjugated Poly(Azomethine)s

Azalea Uva et al. J Am Chem Soc. .

Abstract

Carotenoids are a class of biobased conjugated molecules that bear a resemblance to the substructure of polyacetylene, a well-known conductive but insoluble polymer. Solubility is an important physical attribute for processing materials using different techniques. To impart solubility in polymers, alkyl side chains are often included in the molecular design. While these design strategies are well explored in conjugated systems, they have not been implemented with carotenoids as a building block in polymers. Here, we show a series of carotenoid-based polymers with varying side chain lengths to tune solubility. Using carotenoid and p-phenylenediamine-based monomers, degradable and biobased poly(azomethine)s were synthesized via imine polycondensation. Maximum solubilities corresponding to the varying alkyl chain lengths were quantitatively determined by ultraviolet-visible (UV-vis) absorption spectroscopy. Since carotenoids are biobased with known degradation products, the effect of acidic and artificial sunlight-promoted degradation was systematically investigated using UV-vis spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, gel permeation chromatography (GPC), and high-resolution mass spectroscopy (HRMS). Our polymer system was found to have two modes of on-demand degradation, with acid hydrolysis accelerating the rate of polymer degradation and artificial sunlight generating additional degradation products. This work highlights carotenoid monomers as viable candidates in the design of biobased, degradable, and conjugated polymers.

PubMed Disclaimer

LinkOut - more resources