Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 7;14(1):674.
doi: 10.1038/s41467-023-36216-6.

Globally invariant metabolism but density-diversity mismatch in springtails

Anton M Potapov  1   2   3   4 Carlos A Guerra  5   6 Johan van den Hoogen  7 Anatoly Babenko  8 Bruno C Bellini  9 Matty P Berg  10   11 Steven L Chown  12 Louis Deharveng  13 Ľubomír Kováč  14 Natalia A Kuznetsova  15 Jean-François Ponge  16 Mikhail B Potapov  15 David J Russell  17 Douglas Alexandre  18 Juha M Alatalo  19 Javier I Arbea  20 Ipsa Bandyopadhyaya  21 Verónica Bernava  22 Stef Bokhorst  10 Thomas Bolger  23   24 Gabriela Castaño-Meneses  25 Matthieu Chauvat  26 Ting-Wen Chen  27   28 Mathilde Chomel  29 Aimee T Classen  30 Jerome Cortet  31 Peter Čuchta  28 Ana Manuela de la Pedrosa  32 Susana S D Ferreira  10 Cristina Fiera  33 Juliane Filser  34 Oscar Franken  10   11   35 Saori Fujii  36 Essivi Gagnon Koudji  37 Meixiang Gao  38 Benoit Gendreau-Berthiaume  39 Diego F Gomez-Pamies  40 Michelle Greve  41 I Tanya Handa  37 Charlène Heiniger  42 Martin Holmstrup  43 Pablo Homet  44 Mari Ivask  45 Charlene Janion-Scheepers  46   47 Malte Jochum  5   6 Sophie Joimel  48 Bruna Claudia S Jorge  49 Edite Jucevica  50 Olga Ferlian  5   6 Luís Carlos Iuñes de Oliveira Filho  51 Osmar Klauberg-Filho  51 Dilmar Baretta  52 Eveline J Krab  53   54 Annely Kuu  55 Estevam C A de Lima  56 Dunmei Lin  57 Zoe Lindo  58 Amy Liu  12 Jing-Zhong Lu  27 María José Luciañez  32 Michael T Marx  59 Matthew A McCary  60 Maria A Minor  61 Taizo Nakamori  62 Ilaria Negri  63 Raúl Ochoa-Hueso  64   65 José G Palacios-Vargas  66 Melanie M Pollierer  27 Pascal Querner  67   68 Natália Raschmanová  14 Muhammad Imtiaz Rashid  69 Laura J Raymond-Léonard  37 Laurent Rousseau  37 Ruslan A Saifutdinov  8 Sandrine Salmon  70 Emma J Sayer  71   72 Nicole Scheunemann  27   73 Cornelia Scholz  68 Julia Seeber  74   75 Yulia B Shveenkova  76 Sophya K Stebaeva  8 Maria Sterzynska  77 Xin Sun  78 Winda I Susanti  27 Anastasia A Taskaeva  79 Madhav P Thakur  80 Maria A Tsiafouli  81 Matthew S Turnbull  82 Mthokozisi N Twala  41 Alexei V Uvarov  8 Lisa A Venier  83 Lina A Widenfalk  84   85 Bruna R Winck  49 Daniel Winkler  86 Donghui Wu  87   88   89 Zhijing Xie  87 Rui Yin  90 Douglas Zeppelini  91 Thomas W Crowther  7 Nico Eisenhauer  5   6 Stefan Scheu  27   92
Affiliations

Globally invariant metabolism but density-diversity mismatch in springtails

Anton M Potapov et al. Nat Commun. .

Abstract

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Sampling locations and latitudinal gradients in springtail community metrics.
a Distribution of the 2470 sampling sites (43,601 soil samples). The histogram shows the number of sites in each 20-degree latitudinal belt, relative to the total land area in the belt. bg, Variation in density (n = 2210 independent sites), biomass, community metabolism, average body mass and average individual metabolism (n = 2053), and local species richness (n = 1735) with latitude. Grey circles across panels show sampling sites; red points are averages for 5-degree latitudinal belts; trends are illustrated with a quadratic function based on 5-degree averages (red line shows the mean, shaded band shows the 95% confidence interval). Source data are provided as a Source data file.
Fig. 2
Fig. 2. Global maps overlapping modelled springtail density and local species richness and community metabolism in soil.
In (a) colours distinguish areas with different combinations of density and species richness, e.g., low density—low richness is given in yellow and high density—high richness in violet. In (b) the colour gradient indicates community metabolism, with potential coldspots shown in yellow and hotspots shown in blue. Pixels below the 90% extrapolation threshold for the corresponding variables are masked (see methods). Correlations between density or metabolism and species richness (inset graphs) are based on site-level data (points; n = 1257).
Fig. 3
Fig. 3. Environmental predictors of springtail communities at the global scale.
Standardized effect sizes for direct (semi-transparent colour) and total (direct and indirect, solid colour) effects from path analysis are shown for density (R2 = 0.36 ± 0.01, n = 723 per iteration), local species richness (R2 = 0.20 ± 0.02, n = 352), biomass (R2 = 0.40 ± 0.02, n = 568), and community metabolism (R2 = 0.17 ± 0.02, n = 533). Mean values (squares) and data distribution (violins) are shown. Asterisks denote factors with a significant direct effect (two-tailed; p < 0.05) on a given springtail community metric for >25%(*), >50%*, >75%** and >95%*** of iterations. Source data are provided as a Source data file.

References

    1. FAO, ITPS, GSBI, SCBD & EC. State of Knowledge of Soil Biodiversity Status, Challenges and Potentialities, Report 2020. 10.4060/cb1928en (FAO, 2020).
    1. Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. - DOI - PubMed
    1. Handa IT, et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature. 2014;509:218–221. doi: 10.1038/nature13247. - DOI - PubMed
    1. Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA. 2014;111:5266–5270. doi: 10.1073/pnas.1320054111. - DOI - PMC - PubMed
    1. Delgado-Baquerizo M, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020;4:210–220. doi: 10.1038/s41559-019-1084-y. - DOI - PubMed

Publication types