Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 7;14(5):1286-1290.
doi: 10.1039/d2sc05841c. eCollection 2023 Feb 1.

A Ni-catalyzed asymmetric C(sp)-P cross-coupling reaction for the synthesis of P-stereogenic alkynylphosphines

Affiliations

A Ni-catalyzed asymmetric C(sp)-P cross-coupling reaction for the synthesis of P-stereogenic alkynylphosphines

Bin Zhang et al. Chem Sci. .

Abstract

Due to the high reactivity of the triple bond, P-stereogenic alkynylphosphines could be easily derivatized, serving as universal building blocks for structurally diverse phosphine compounds. However, the synthesis of alkynylphosphines via direct P-C bond formation was unprecedented. Here, we report an efficient method for the synthesis of P-stereogenic alkynylphosphines with high enantioselectivity via a Ni-catalyzed asymmetric cross-coupling reaction. The reaction could tolerate a variety of functional groups, affording products that can be converted into useful phosphine derivatives.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. P-stereogenic alkynylphosphines.
Fig. 1
Fig. 1. (A) Hydration. (B) Radical addition cyclization. (C) Synthesis of P-stereogenic phosphepine. (D) PL spectra of 6 in THF/water mixtures with different water fractions and 6 films under 365 nm. (E) CPL spectra of 6 films. (F) glum value spectra of 6 films.

References

    1. For the selected examples, see:

    2. Vineyard B. D. Knowles W. S. Sabacky M. J. Bachman G. L. Weinkauff D. J. J. Am. Chem. Soc. 1977;99:5946–5952. doi: 10.1021/ja00460a018. - DOI
    3. Knowles W. S. Adv. Synth. Catal. 2003;345:3–13. doi: 10.1002/adsc.200390028. - DOI
    4. Imamoto T. Yuki Gosei Kagaku Kyokaishi. 2007;65:1060–1069. doi: 10.5059/yukigoseikyokaishi.65.1060. - DOI
    5. Dutartre M. Bayardon J. Juge S. Chem. Soc. Rev. 2016;45:5771–5794. doi: 10.1039/C6CS00031B. - DOI - PubMed
    6. Imamoto T. Chem. Rec. 2016;16:2659–2673. doi: 10.1002/tcr.201600098. - DOI - PubMed
    7. Xiang Y. J. Ge Q. Y. Wu S. L. Zheng Y. Yang Z. H. RSC Adv. 2022;10:9563–9578. doi: 10.1039/D0RA00377H. - DOI - PMC - PubMed
    8. Cabre A. Riera A. Verdaguer X. Acc. Chem. Res. 2022;53:676–689. doi: 10.1021/acs.accounts.9b00633. - DOI - PubMed
    1. For the selected recent examples, see:

    2. Imamoto T. Sugita K. Yoshida K. J. Am. Chem. Soc. 2005;127:11934–11935. doi: 10.1021/ja053458f. - DOI - PubMed
    3. Geng H. Zhang W. C. Chen J. Hou G. Zhou L. Zou Y. Wu W. Zhang X. Angew. Chem., Int. Ed. 2009;48:6052–6054. doi: 10.1002/anie.200902339. - DOI - PubMed
    4. Taylor A. Altman R. A. Buchwald S. L. J. Am. Chem. Soc. 2009;131:9900–9901. doi: 10.1021/ja903880q. - DOI - PMC - PubMed
    5. Liu G. Liu X. Cai Z. Jiao G. Xu G. Tang W. Angew. Chem., Int. Ed. 2013;52:4235–4238. doi: 10.1002/anie.201300646. - DOI - PubMed
    6. González-Liste P. J. Leon F. Arribas I. Rubio M. Garcia-Garrido S. E. Cadierno V. Pizzano A. ACS Catal. 2016;6:3056–3060. doi: 10.1021/acscatal.6b00282. - DOI
    7. Li B. Chen J. Zhang Z. Gridnev I. D. Zhang W. Angew. Chem., Int. Ed. 2019;58:7329–7334. doi: 10.1002/anie.201902576. - DOI - PubMed
    8. Tang W. Patel N. Xu G. Xu X. Savoie J. Ma S. Hao M. Keshipeddy S. Capacci A. G. Wei X. Zhang Y. Gao J. J. Li W. Rodriguez S. Lu B. Yee N. K. Senanayake C. H. Org. Lett. 2012;14:2258–2261. doi: 10.1021/ol300659d. - DOI - PubMed
    9. Hu N. Zhao G. Zhang Y. Liu X. Li G. Tang W. J. Am. Chem. Soc. 2015;137:6746–6749. doi: 10.1021/jacs.5b03760. - DOI - PubMed
    10. Jang Y.-S. Woz'niak L. Pedroni J. Cramer N. Angew. Chem., Int. Ed. 2018;57:12901–12905. doi: 10.1002/anie.201807749. - DOI - PubMed
    11. Li L. Liu Y.-C. Shi H. J. Am. Chem. Soc. 2021;143:4154–4161. doi: 10.1021/jacs.1c00622. - DOI - PubMed
    1. Imamoto T. Saitoh Y. Koide A. Ogura T. Yoshida K. Angew. Chem., Int. Ed. 2007;46:8636–8639. doi: 10.1002/anie.200702513. - DOI - PubMed
    1. Xu W.-B. Sun M. Shu M. Li C. J. Am. Chem. Soc. 2021;143:8255–8260. doi: 10.1021/jacs.1c04016. - DOI - PubMed
    1. For the selected recent examples, see:

    2. Jiang W. Fiordeliso J. J. Linton O. Tannenbaum P. Xu J. Zhu P. Gunnet J. Demarest K. Lundeen S. Sui Z. Steroids. 2006;71:949–954. doi: 10.1016/j.steroids.2006.07.003. - DOI - PubMed
    3. Salomon D. G. Grioli S. M. Buschiazzo M. Mascaro E. Vitale C. Radivoy G. Perez M. Fall Y. Mesri E. A. Curino A. C. Facchinetti M. M. ACS Med. Chem. Lett. 2011;2:503–508. doi: 10.1021/ml200034w. - DOI - PMC - PubMed
    4. Horiba M. Yamaguchi T. Obika S. J. Org. Chem. 2022;85:1794–1801. doi: 10.1021/acs.joc.9b01318. - DOI - PubMed
    5. Pujadas M. Rodriguez L. Coord. Chem. Rev. 2022;408:213179. doi: 10.1016/j.ccr.2020.213179. - DOI