Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 20;13(5):3147-3154.
doi: 10.1039/d2ra07807d. eCollection 2023 Jan 18.

Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts

Affiliations

Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts

Ramanand Das et al. RSC Adv. .

Abstract

An efficient protocol for diazenylation of 1,3-diones under photoredox conditions is presented herein. C-N bond forming Csp3 -H functionalization of cyclic and alkyl diones by unstable aryl diazenyl radicals is achieved through reaction with aryldiazonium tetrafluoroborates by organocatalysts under visible light irradiation. The reaction has wide substrate scope, gives excellent yields, and is also efficient in water as a green solvent. This method provides an easy access to aryldiazenyl derivatives that are useful key starting materials for the synthesis of aza heterocycles as well as potential pharmacophores.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Different types of reaction with aryldiazonium salts.
Fig. 1
Fig. 1. Dehydrogenative diazenylation of diones.
Scheme 2
Scheme 2. Substrate scope of Meldrum's acid. a Isolated yield; reaction condition: 1a (0.20 mmol), 2 (0.24 mmol), Eosin Y (2 mol%), DIPEA (0.20 mmol), ACN (2 mL), 40 W Kessil Blue LED bulb and stirring at room temperature.
Fig. 2
Fig. 2. Time profile UV-vis spectroscopic analysis.
Scheme 3
Scheme 3. Reaction of barbiturate with p-nitro aryldiazonium salt.
Scheme 4
Scheme 4. Substrate scope for other 1,3 diones. a Isolated yield; reaction condition: 1a (0.20 mmol), 2 (0.24 mmol), Eosin Y (2 mol%), DIPEA (0.20 mmol), ACN (2 mL), Ar, 40 W Kessil 160WE Blue LED bulb and stirring at room temperature. b Reaction condition: 1a (0.20 mmol), 2 (0.24 mmol), Rose Bengal (2 mol%), DIPEA (0.20 mmol), water (2 mL), 40 W Kessil 160WE Blue LED bulb and stirring at room temperature.
Fig. 3
Fig. 3. Plausible mechanism for C–N bond forming Csp3–H functionalization of cyclic diones.
Fig. 4
Fig. 4. Cyclic voltammogram of p-methoxy aryldiazonium tetrafluoroborates salt 2a (red, 1 mM) and blank (black). Supporting electrolyte LiClO4 (0.1 M); scan rate 0.1 V s−1.
Fig. 5
Fig. 5. Cyclic voltammogram of p-nitro aryldiazonium tetrafluoroborates salt 2c (red, 1 mM) and blank (black). Supporting electrolyte LiClO4 (0.1 M); scan rate 0.7 V s−1.
Fig. 6
Fig. 6. Cyclic voltammogram of p-fluoro aryldiazonium tetrafluoroborates salt 2d (red, 1 mM) and blank (black). Supporting electrolyte LiClO4 (0.1 M); scan rate 0.1 V s−1.
Scheme 5
Scheme 5. Gram scale synthesis.

Similar articles

Cited by

References

    1. Beharry A. A. Woolley G. A. Chem. Soc. Rev. 2011;40:4422–4437. - PubMed
    2. Szymański W. Beierle J. M. Kistemaker H. A. V. Velema W. A. Feringa B. L. Chem. Rev. 2013;113:6114–6178. - PubMed
    3. Dong M. Babalhavaeji A. Samanta S. Beharry A. A. Woolley G. A. Acc. Chem. Res. 2015;48:2662–2670. - PubMed
    4. Hartwig J. F. Nature. 2008;455:314–322. - PMC - PubMed
    5. Yudin A. K. and Hartwig J. F., Catalysed Carbon-Heteroatom Bond Formation, Wiley-VCH, Weinheim, 2010
    6. Yasukawa N. Kuwata M. Imai T. Monguchi Y. Sajiki H. Sawama Y. Green Chem. 2018;20:4409–4413.
    7. Shi J. Yuan T. Wang R. Zheng M. Wang X. Green Chem. 2021;23:3945–3949.
    1. Yu Y. Nakano M. Ikeda T. Nature. 2003;425:145. - PubMed
    2. Sondhi S. M. Dinodia M. Kumar A. Bioorg. Med. Chem. 2006;14:4657–4663. - PubMed
    3. Fehrentz T. Schönberger M. Trauner D. Angew. Chem., Int. Ed. 2011;50:12156–12182. - PubMed
    4. Beharry A. A. Woolley G. A. Chem. Soc. Rev. 2011;40:4422–4437. - PubMed
    5. Ho B. K. Ngaini Z. Matthew Neilsen P. Hwang S. S. Entigu Linton R. Kong E. L. Lee B. K. J. Chem. 2017;2017:1–7.
    6. Lee S. H. Moroz E. Castagner B. Leroux J. C. J. Am. Chem. Soc. 2014;136:12868–12871. - PubMed
    7. Sofan M. A. El-Mekabaty A. Hasel A. M. Said S. B. J. Heterocycl. Chem. 2021;58:1645–1655.
    8. Kumar G. S. Neckers D. C. Chem. Rev. 1989;89:1915–1925.
    1. Roldo M. Barbu E. Brown J. F. Laight D. W. Smart J. D. Tsibouklis J. Expert Opin. Drug Delivery. 2007;4:547–560. - PubMed
    2. Cassano R. Trombino S. Cilea A. Ferrarelli T. Muzzalupo R. Picci N. Chem. Pharm. Bull. 2010;58:103–105. - PubMed
    3. Jain A. Gupta Y. Jain S. K. Crit. Rev. Ther. Drug Carrier Syst. 2006;23:349–400. - PubMed
    1. Benkhaya S. M’rabet S. El Harfi A. Heliyon. 2020;6:e03271. - PMC - PubMed
    2. Koshti S. M. Sonar J. P. Sonawane A. E. Pawar Y. A. Nagle P. S. Mahulikar P. P. More D. H. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2008;47:329–331.
    3. Zhao R. Tan C. Xie Y. Gao C. Liu H. Jiang Y. Tetrahedron Lett. 2011;52:3805–3809.
    4. Grirrane A. Corma A. García H. Science. 2008;322:1661–1664. - PubMed
    5. Qiao R. Z. Zhang Y. Hui X. P. Xu P. F. Zhang Z. Y. Wang X. Y. Green Y. L. Chem. 2001;3:186–188.
    6. Zhang C. Jiao N. Angew. Chem. 2010;122:6310–6313.
    1. Deng B. Li C. Yuan J. Rao C. B. Zhao Y. Zhang R. Dong D. Tetrahedron. 2019;75:2273–2279.
    2. Raju G. B. Mahesh M. Manjunath G. Ramana P. V. Chem. Sci. Trans. 2016;5:125–136.
    3. dos Santos Filho J. M. de Queiroz e Silva D. M. A. Macedo T. S. Teixeira H. M. P. Moreira D. R. M. Challal S. Wolfender J. L. Queiroz E. F. Soares M. B. P. Bioorg. Med. Chem. 2016;24:5693–5701. - PubMed
    4. Pranali D. Kale J. Chem. Pharm. Res. 2013;5:130–134.