Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 22;15(7):9604-9617.
doi: 10.1021/acsami.2c20299. Epub 2023 Feb 10.

Pt/MoS2/Polyaniline Nanocomposite as a Highly Effective Room Temperature Flexible Gas Sensor for Ammonia Detection

Affiliations

Pt/MoS2/Polyaniline Nanocomposite as a Highly Effective Room Temperature Flexible Gas Sensor for Ammonia Detection

Xu Tian et al. ACS Appl Mater Interfaces. .

Abstract

A Pt/MoS2/polyaniline (Pt/MoS2/PANI) nanocomposite is successfully synthesized by the hydrothermal process combined with the in situ polymerization method, and then Pt particles are decorated on its surface. The Pt/MoS2/PANI nanocomposite is deposited on a flexible Au-interdigitated electrode of a polyimide (PI) film. The flexible sensor exhibits a higher response value and fast response/recovery time to NH3 at room temperature (RT). It results in 2.32-fold and 1.13-fold improvement in the gas-sensing response toward 50 ppm NH3 compared to those of PANI and MoS2/PANI-based gas sensors. The detection limit is 250 ppb. The enhancement sensing mechanisms are attributed to the p-n heterojunction and the Schottky barrier between the three components, which has been confirmed by the current-voltage (I-V) curves. A satisfactory selectivity to NH3 against trimethylamine (TMA) and triethylamine (TEA) is obtained according to density functional theory (DFT), Bader's analysis, and differential charge density to illustrate the adsorption behavior and charge transfer of gas molecules on the surface of the sensing materials. The sensor retains the excellent sensing response value even under high relative humidity and sensing stability at higher bending angle/numbers to NH3 gas. Hence, Pt/MoS2/PANI can be regarded as a promising sensing material for high-performance NH3 detection at room temperature applied in flexible wearable electronics.

Keywords: Pt/MoS2/PANI; density functional theory; flexible ammonia sensor; room temperature; wearable electronics.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources