Class II two-peptide lanthipeptide proteases: exploring LicTP for biotechnological applications
- PMID: 36763118
- PMCID: PMC10006061
- DOI: 10.1007/s00253-023-12388-5
Class II two-peptide lanthipeptide proteases: exploring LicTP for biotechnological applications
Abstract
The enzymatic machinery involved in the biosynthesis of lantibiotic is an untapped source of proteases with different specificities. Lanthipeptide biosynthesis requires proteolysis of specific target sequences by known proteases, which are encoded by contiguous genes. Herein, the activity of lichenicidin A2 (LicA2) trimming proteases (LicP and LicT) was investigated in vivo. Firstly, the impact of some residues and the size of the peptide were evaluated. Then followed trials in which LicA2 leader was evaluated as a tag to direct production and secretion of other relevant peptides. Our results show that a negatively charged residue (preferably Glu) at cleavage site is important for LicP efficacy. Some mutations of the lichenicidin hexapeptide such as Val-4Ala, Asp-5Ala, Asn-6Ser, and the alteration of GG-motif to GA resulted in higher processing rates, indicating the possibility of improved lichenicidin production in Escherichia coli. More importantly, insulin A, amylin (non-lanthipeptides), and epidermin were produced and secreted to E. coli supernatant, when fused to the LicA2 leader peptide. This work aids in clarifying the activity of lantibiotic-related transporters and proteases and to evaluate their possible application in industrial processes of relevant compounds, taking advantage of the potential of microorganisms as biofactories. KEY POINTS: • LicM2 correct activity implies a negatively charged residue at position -1. • Hexapeptide mutations can increase the amount of fully processed Bliβ. • LicA2 leader peptide directs LicTP cleavage and secretion of other peptides.
Keywords: Chimeric genes; Lanthipeptides; Lantibiotics; Proteases; Recombinant peptides; Site-directed mutagenesis.
© 2023. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
Applications of the class II lanthipeptide protease LicP for sequence-specific, traceless peptide bond cleavage.Chem Sci. 2015 Nov 1;6(11):6270-6279. doi: 10.1039/c5sc02329g. Epub 2015 Sep 2. Chem Sci. 2015. PMID: 30090246 Free PMC article.
-
Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lanthipeptides.Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2533-2538. doi: 10.1073/pnas.1815594116. Epub 2019 Jan 24. Proc Natl Acad Sci U S A. 2019. PMID: 30679276 Free PMC article.
-
Mechanistic aspects of lanthipeptide leaders.Curr Protein Pept Sci. 2013 Mar;14(2):85-96. doi: 10.2174/1389203711314020001. Curr Protein Pept Sci. 2013. PMID: 23441895 Review.
-
Lichenicidin rational site-directed mutagenesis library: A tool to generate bioengineered lantibiotics.Biotechnol Bioeng. 2019 Nov;116(11):3053-3062. doi: 10.1002/bit.27130. Epub 2019 Aug 8. Biotechnol Bioeng. 2019. PMID: 31350903
-
Improving the attrition rate of Lanthipeptide discovery for commercial applications.Expert Opin Drug Discov. 2018 Feb;13(2):155-167. doi: 10.1080/17460441.2018.1410137. Epub 2017 Dec 1. Expert Opin Drug Discov. 2018. PMID: 29195488 Review.
Cited by
-
Promiscuity of lanthipeptide enzymes: new challenges and applications.World J Microbiol Biotechnol. 2025 Aug 6;41(8):298. doi: 10.1007/s11274-025-04505-5. World J Microbiol Biotechnol. 2025. PMID: 40768108 Free PMC article. Review.
-
Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects.Antibiotics (Basel). 2024 Jun 28;13(7):603. doi: 10.3390/antibiotics13070603. Antibiotics (Basel). 2024. PMID: 39061285 Free PMC article. Review.
-
Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis.ACS Bio Med Chem Au. 2023 Dec 13;4(1):20-36. doi: 10.1021/acsbiomedchemau.3c00059. eCollection 2024 Feb 21. ACS Bio Med Chem Au. 2023. PMID: 38404746 Free PMC article. Review.
References
-
- Allgaier H, Jung G, Werner RG, Schneider U, Zähner H. Elucidation of the structure of epidermin, a ribosomally synthesized, tetracyclic heterodetic polypeptide antibiotic. Angew Chemie Int Ed English. 1985;24:1051–1053. doi: 10.1002/anie.198510511. - DOI
-
- Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach M a, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link a J, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–60. 10.1039/c2np20085f - PMC - PubMed
MeSH terms
Substances
Grants and funding
- SFRH/BD/97099/2013/Fundação para a Ciência e a Tecnologia (PT)
- SFRH/BPD/77900/2011/Fundação para a Ciência e a Tecnologia (PT)
- CEECIND/01463/2017/Fundação para a Ciência e a Tecnologia (PT)
- FCOMP-01-0124-FEDER-027569/Fundação para a Ciência e a Tecnologia (PT)
- UIDP/50017/2020/Centro de Estudos do Ambiente e do Mar (PT)
LinkOut - more resources
Full Text Sources
Molecular Biology Databases