Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr:231:107365.
doi: 10.1016/j.cmpb.2023.107365. Epub 2023 Feb 8.

Automatic assessment of pain based on deep learning methods: A systematic review

Affiliations
Free article

Automatic assessment of pain based on deep learning methods: A systematic review

Stefanos Gkikas et al. Comput Methods Programs Biomed. 2023 Apr.
Free article

Abstract

Background and objective: The automatic assessment of pain is vital in designing optimal pain management interventions focused on reducing suffering and preventing the functional decline of patients. In recent years, there has been a surge in the adoption of deep learning algorithms by researchers attempting to encode the multidimensional nature of pain into meaningful features. This systematic review aims to discuss the models, the methods, and the types of data employed in establishing the foundation of a deep learning-based automatic pain assessment system.

Methods: The systematic review was conducted by identifying original studies searching digital libraries, namely Scopus, IEEE Xplore, and ACM Digital Library. Inclusion and exclusion criteria were applied to retrieve and select those of interest, published until December 2021.

Results: A total of one hundred and ten publications were identified and categorized by the number of information channels used (unimodal versus multimodal approaches) and whether the temporal dimension was also used.

Conclusions: This review demonstrates the importance of multimodal approaches for automatic pain estimation, especially in clinical settings, and also reveals that significant improvements are observed when the temporal exploitation of modalities is included. It provides suggestions regarding better-performing deep architectures and learning methods. Also, it provides suggestions for adopting robust evaluation protocols and interpretation methods to provide objective and comprehensible results. Furthermore, the review presents the limitations of the available pain databases for optimally supporting deep learning model development, validation, and application as decision-support tools in real-life scenarios.

Keywords: Affective computing; Biosignals; Facial expression; Machine learning; Pain recognition.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources