Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;8(5):323-8.
doi: 10.1016/0142-9612(87)90001-9.

Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge

Affiliations

Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge

P B van Wachem et al. Biomaterials. 1987 Sep.

Abstract

The adhesion of human endothelial cells (HEC) onto a series of well-characterized methacrylate polymer surfaces with varying wettabilities and surface charges was studied either in serum-containing (CMS) or in serum-free (CM) culture medium. HEC adhesion in CMS onto (co)polymers of hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) was found to be optimal on the moderately wettable copolymer (mol ratio 25 HEMA/75 MMA). Positively-charged copolymers of HEMA or MMA with trimethylaminoethyl methacrylate-HCl salt (TMAEMA-Cl), both with mol ratios of 85/15 and a negatively-charged copolymer of MMA with methacrylic acid (MAA), mol ratio 85/15, showed high numbers of adhering HEC. In CM, HEC adhered onto the three charged copolymers mentioned above, but neither onto the copolymer of HEMA and MAA (mol ratio 85/15) nor onto the HEMA/MMA co- and homopolymers. Complete cell spreading in CM was only observed on the positively-charged copolymers.

PubMed Disclaimer

LinkOut - more resources