Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec;70(6):1861-6.

Deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in SS and young AA cells: a cytosolic Mg2+ modulation

Affiliations
  • PMID: 3676517
Free article

Deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in SS and young AA cells: a cytosolic Mg2+ modulation

M Canessa et al. Blood. 1987 Dec.
Free article

Abstract

We recently reported that the Cl(-)-dependent K+ (K:Cl) efflux, which can be stimulated by cell swelling in the presence of inhibitors of the Na+ pump (ouabain) and of the Na-K-Cl cotransport (bumetanide), is highly active in young AA and SS RBCs. We report here that deoxygenation inhibits volume-stimulated K:Cl efflux in SS and reticulocyte-enriched density-separated SS and AA RBCs. In SS whole blood, the K:Cl efflux stimulated by hypotonic (220 mOsm) swelling was reduced from 9.2 +/- 2 (mean +/- SE) in oxygen to 2.7 +/- 1.9 (mmol/L cell/h = flux units = FU) (n = 4) under deoxygenated conditions (P less than .005). Deoxygenation also decreased the acid pH-stimulated K:Cl efflux from 5.9 +/- 1.5 to 3.7 +/- 1.1 FU (n = 3) (P less than .025) but did not inhibit NEM-stimulated K:Cl transport. The effect of deoxygenation on density-separated SS cells is similar: When fraction SS2 (reversible discocytes) is deoxygenated under hypotonic conditions, the K:Cl efflux is reduced by 50%. In reticulocyte-enriched AA cells obtained from anemic patients, deoxygenation under hypotonic conditions also reduces K+ efflux by 50%. In SS cells only, deoxygenation under isotonic conditions results in an increased Cl(-)-independent K+ efflux. Because ionized Mg2+ in the cytosol increases during deoxygenation, we investigated the effect of external and internal Mg2+ on the volume-stimulated K:Cl efflux. Removal of external Mg2+ did not influence the rate of transport in oxygenated cells. When internal Mg2+ was clamped at 0.15 mmol/L with A23187 and EDTA at ionized cytosolic Ca2+ = O, however, the inhibitory effect of deoxygenation on the K:Cl efflux was eliminated. We conclude that deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in AA and SS young red cells by concomitantly increasing ionized cytosolic Mg2+.

PubMed Disclaimer

Publication types

LinkOut - more resources