Magnetic-Field-Based Indoor Positioning Using Temporal Convolutional Networks
- PMID: 36772554
- PMCID: PMC9921884
- DOI: 10.3390/s23031514
Magnetic-Field-Based Indoor Positioning Using Temporal Convolutional Networks
Abstract
Traditional magnetic-field positioning methods collect magnetic-field information from each spatial point to construct a magnetic-field fingerprint database. During the positioning phase, real-time magnetic-field measurements are matched to a magnetic-field map to predict the user's location. However, this approach requires a significant amount of time to traverse the entire magnetic-field fingerprint database and does not effectively leverage the magnetic-field sequence's unique patterns to improve the accuracy and robustness of the positioning system. In recent years, the application of deep learning for the indoor positioning of magnetic fields has grown rapidly, especially by using the magnetic-field sequence as a time series and a trained long short-term memory (LSTM) model to predict the position, directly avoiding the time-consuming matching process. However, the training of LSTM is time-consuming, and the degradation problem occurs as the stack of layers increases. This article proposes a temporal convolutional network (TCN)-based magnetic-field positioning system that extracts magnetic-field sequence features by preprocessing them with coordinate transformation, smoothing filtering, and first-order differencing. The proposed method is seamlessly applicable to heterogeneous smartphones. The trained TCN models are compared with the LSTM and gated recurrent unit (GRU) models, showing the high accuracy and robustness of the proposed algorithm.
Keywords: heterogenous smartphones; indoor positioning; magnetic field; magnetic trajectories; temporal convolutional networks.
Conflict of interest statement
The authors declare no conflict of interest.
Figures











References
-
- Schiller J., Voisard A. Location-Based Services. Elsevier; Amsterdam, The Netherlands: 2004.
-
- Basiri A., Lohan E.S., Moore T., Winstanley A., Peltola P., Hill C., Amirian P., e Silva P.F. Indoor location based services challenges, requirements and usability of current solutions. Comput. Sci. Rev. 2017;24:1–12. doi: 10.1016/j.cosrev.2017.03.002. - DOI
-
- Ali M.U., Hur S., Park S., Park Y. Harvesting indoor positioning accuracy by exploring multiple features from received signal strength vector. IEEE Access. 2019;7:52110–52121. doi: 10.1109/ACCESS.2019.2911601. - DOI
-
- Yao C.Y., Hsia W.C. An indoor positioning system based on the dual-channel passive RFID technology. IEEE Sens. J. 2018;18:4654–4663. doi: 10.1109/JSEN.2018.2828044. - DOI
LinkOut - more resources
Full Text Sources