A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis
- PMID: 36778001
- PMCID: PMC9903693
- DOI: 10.1016/j.xgen.2022.100190
A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis
Abstract
Genomics-driven drug discovery is indispensable for accelerating the development of novel therapeutic targets. However, the drug discovery framework based on evidence from genome-wide association studies (GWASs) has not been established, especially for cross-population GWAS meta-analysis. Here, we introduce a practical guideline for genomics-driven drug discovery for cross-population meta-analysis, as lessons from the Global Biobank Meta-analysis Initiative (GBMI). Our drug discovery framework encompassed three methodologies and was applied to the 13 common diseases targeted by GBMI (N mean = 1,329,242). Individual methodologies complementarily prioritized drugs and drug targets, which were systematically validated by referring previously known drug-disease relationships. Integration of the three methodologies provided a comprehensive catalog of candidate drugs for repositioning, nominating promising drug candidates targeting the genes involved in the coagulation process for venous thromboembolism and the interleukin-4 and interleukin-13 signaling pathway for gout. Our study highlighted key factors for successful genomics-driven drug discovery using cross-population meta-analyses.
Keywords: Mendelian randomization; cross-population meta-analysis; gene prioritization; genetically regulated gene expression; genome-wide association study; genomics-driven drug discovery.
© 2022 The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative.Cell Genom. 2022 Oct 12;2(10):100180. doi: 10.1016/j.xgen.2022.100180. Cell Genom. 2022. PMID: 36341024 Free PMC article.
-
Global Biobank Meta-analysis Initiative: Powering genetic discovery across human disease.Cell Genom. 2022 Oct 12;2(10):100192. doi: 10.1016/j.xgen.2022.100192. eCollection 2022 Oct 12. Cell Genom. 2022. PMID: 36777996 Free PMC article.
-
Proteome-wide Mendelian randomization in global biobank meta-analysis reveals multi-ancestry drug targets for common diseases.Cell Genom. 2022 Nov 9;2(11):None. doi: 10.1016/j.xgen.2022.100195. Cell Genom. 2022. PMID: 36388766 Free PMC article.
-
From the era of genome analysis to the era of genomic drug discovery: a pioneering example of rheumatoid arthritis.Clin Genet. 2014 Nov;86(5):432-40. doi: 10.1111/cge.12465. Epub 2014 Sep 8. Clin Genet. 2014. PMID: 25060537 Review.
-
Interpretation of risk loci from genome-wide association studies of Alzheimer's disease.Lancet Neurol. 2020 Apr;19(4):326-335. doi: 10.1016/S1474-4422(19)30435-1. Epub 2020 Jan 24. Lancet Neurol. 2020. PMID: 31986256 Free PMC article. Review.
Cited by
-
Multi-omics Mendelian randomization integrating GWAS, eQTL and pQTL data revealed GSTM4 as a potential drug target for migraine.J Headache Pain. 2024 Jul 22;25(1):117. doi: 10.1186/s10194-024-01828-w. J Headache Pain. 2024. PMID: 39039470 Free PMC article.
-
Extracting immunological and clinical heterogeneity across autoimmune rheumatic diseases by cohort-wide immunophenotyping.Ann Rheum Dis. 2024 Jan 11;83(2):242-252. doi: 10.1136/ard-2023-224537. Ann Rheum Dis. 2024. PMID: 37903543 Free PMC article.
-
Integrin signalling in joint development, homeostasis and osteoarthritis.Nat Rev Rheumatol. 2024 Aug;20(8):492-509. doi: 10.1038/s41584-024-01130-8. Epub 2024 Jul 16. Nat Rev Rheumatol. 2024. PMID: 39014254 Free PMC article. Review.
-
Subclinical Atherosclerosis in a Gout Cohort: Prevalence and Associations.Curr Health Sci J. 2024 Apr-Jun;50(2):274-282. doi: 10.12865/CHSJ.50.02.13. Epub 2024 Jun 30. Curr Health Sci J. 2024. PMID: 39371056 Free PMC article.
-
Polygenic and pharmacogenomic contributions to medication dosing: a real-world longitudinal biobank study.J Transl Med. 2025 Jul 2;23(1):727. doi: 10.1186/s12967-025-06782-y. J Transl Med. 2025. PMID: 40605081 Free PMC article.
References
-
- Chen L., ULTRA-DD Consortium. Knezevic B., Burnham K.L., Sanniti A., Lledó Lara A., De Cesco S., Wegner J.K., McCann F.E., Fang H., Handunnetthi L., et al. A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat. Genet. 2019;51:1082–1091. doi: 10.1038/s41588-019-0456-1. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources