Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue

Gina M Many et al. bioRxiv. .

Update in

  • Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue.
    Many GM, Sanford JA, Sagendorf TJ, Hou Z, Nigro P, Whytock KL, Amar D, Caputo T, Gay NR, Gaul DA, Hirshman MF, Jimenez-Morales D, Lindholm ME, Muehlbauer MJ, Vamvini M, Bergman BC, Fernández FM, Goodyear LJ, Hevener AL, Ortlund EA, Sparks LM, Xia A, Adkins JN, Bodine SC, Newgard CB, Schenk S; MoTrPAC Study Group. Many GM, et al. Nat Metab. 2024 May;6(5):963-979. doi: 10.1038/s42255-023-00959-9. Epub 2024 May 1. Nat Metab. 2024. PMID: 38693320 Free PMC article.

Abstract

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training. Multi-omic analyses of adipose tissue integrated with phenotypic measures identified sex-specific training responses including enrichment of mTOR signaling in females, while males displayed enhanced mitochondrial ribosome biogenesis and oxidative metabolism. Overall, this study reinforces our understanding that sex impacts scWAT biology and provides a rich resource to interrogate responses of scWAT to endurance training.

PubMed Disclaimer

Publication types

LinkOut - more resources