Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 30;31(3):4041-4054.
doi: 10.1364/OE.475604.

Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation

Free article

Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation

Connor D W Mosley et al. Opt Express. .
Free article

Abstract

Periodically-poled lithium niobate (PPLN) sources consisting of custom-built stacks of large-area wafers provide a unique opportunity to systematically study the multi-cycle terahertz (THz) generation mechanism as they are assembled layer-by-layer. Here we investigate and optimize the THz emission from PPLN wafer stacks as a function of wafer number, pump fluence, pulse duration and chirp, wafer separation, and pump focusing. Using 135 µm-thick, 2"-diameter wafers we generate high-energy, narrowband THz pulses with central frequencies up to 0.39 THz, directly suitable for THz-driven particle acceleration applications. We explore the multi-cycle pulse build-up with increasing wafer numbers using electro-optic sampling measurements, achieving THz conversion efficiencies up to 0.17%, while demonstrating unique control over the pulse length and bandwidth these sources offer. Guided by simulations, observed frequency-dependence on both stack-mounting and pump focusing conditions have been attributed to inter-wafer etalon and Gouy phase-shifts respectively, revealing subtle features that are critical to the understanding and performance of PPLN wafer-stack sources for optimal narrowband THz generation.

PubMed Disclaimer

LinkOut - more resources